设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(5),1219-1226
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135125
Hardy-Littlewood
4
Œ
Ž
f
3
Wiener
Amalgam
˜
m
¥
k
.
5
ÇÇÇ
˜˜˜
ééé
§§§
ššš
SSS
∗
§§§
MMM
777
xxx
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2023
c
4
11
F
¶
¹
^
F
Ï
µ
2023
c
5
12
F
¶
u
Ù
F
Ï
µ
2023
c
5
19
F
Á
‡
©
A^
Wieneramalgam
˜
m
i
\
'
X
§
y
²
Hardy-Littlewood
4
Œ
Ž
f
M
W
(
F
L
p
,L
q
)
k
.
5
Ú
Wieneramalgam
˜
m
¥
f
(1
,
1)
5
"
'
…
c
Hardy-Littlewo od
4
Œ
Ž
f
§
Lebesgue
˜
m
§
WienerAmalgam
˜
m
TheBoundednessoftheHardy-Littlewood
MaximalOperatorsinWienerAmalgam
Spaces
YulianWu,XiaochunSun
∗
,GaotingXu
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.11
th
,2023;accepted:May12
th
,2023;published:May19
th
,2023
Abstract
UsingtheembeddingrelationshipofWieneramalgamspaces,weprovedthatthe
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
Ç
˜
é
§
š
S
§
M
7
x
.Hardy-Littlewood
4
Œ
Ž
f
3
WienerAmalgam
˜
m
¥
k
.
5
[J].
n
Ø
ê
Æ
,
2023,13(5):1219-1226.DOI:10.12677/pm.2023.135125
Ç
˜
é
Hardy-Littlewo odmaximaloperator
M
isboundedfrom
W
(
F
L
p
,L
q
)
to
W
(
F
L
p
,L
q
)
.
Meanwhile,weobtainedthattheHardy-Littlewoodmaximaloperator
M
isweak(1,1)
inWieneramalgamspaces.
Keywords
Hardy-Littlewo odMaximalOperator,LebesgueSpaces,WienerAmalgamSpaces
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
Hardy-Littlewood
4
Œ
Ž
f
3
Ø
Ó
¼
ê
˜
m
¥
k
.
5
k
¯
õ
ï
Ä
. Stein
3
©
z
[1]
¥
ä
N
‰
Ñ
Hardy-Littlewood
4
Œ
Ž
f
3
Lebesgue
˜
m
¥
´
r
(
p,p
)
.
Ú
f
(1
,
1)
.
Ž
f
.Kinnunen
3
©
z
[2]
¥y
²
Hardy-Littlewood
4
Œ
Ž
f
3
Sobolev
˜
m
W
1
,p
(
R
n
)
þ
k
.
5
,
¿
Ñ
:
O
(
J
.Diening
3
©
z
[3]
¥y
²
Hardy-Littlewood
4
Œ
Ž
f
3
C
•
ê
Lebesgue
˜
m
L
p
(
·
)
(
R
n
)
¥
k
.
5
. Bennett,DeVore
Ú
Sharpley
3
©
z
[4]
y
²
BMO
˜
m
¥
Hardy-Littlewood
4
Œ
Ž
f
k
.
5
.
Wiener
3
©
z
[5]
¥
Ä
g
½
Â
¼
ê
˜
m
W
(
L
1
,L
2
)
Ú
W
(
L
2
,L
1
) ;
3
©
z
[6][7]
¥
q
½
Â
¼
ê
˜
m
W
(
L
1
,L
∞
)
Ú
W
(
L
∞
,L
1
),
Ù
¥
amalgam
˜
m
W
(
L
p
,L
q
)
I
O
‰
ê
½
Â
•
k
f
k
W
(
L
p
,L
q
)
=
X
n
∈
N
Z
n
+1
n
|
f
(
t
)
|
p
d
t
q
p
!
1
q
.
A
O
/
,
p
=
q
ž
,
W
(
L
p
,L
p
)=
L
p
.
e
p
1
≥
p
2
,q
1
≤
q
2
,
K
W
(
L
p
1
,L
q
1
)
→
W
(
L
p
2
,L
q
2
);
e
p
1
≤
p
2
,q
1
≤
q
2
,
K
W
(
F
L
p
1
,L
q
1
)
→
W
(
F
L
p
2
,L
q
2
).
Feichtinger
3
©
z
[8]
¥
ò
Wiener
J
Ñ
amalgam
˜
m
W
(
L
p
,L
q
)
í
2
˜
„
ÿ
À
+
Ú
˜
„
Û
Ü
•
¼
ê
˜
m
(
½
˜
m
)
¥
,
¿
¡
T
˜
m
•
Wieneramalgam
˜
m
.
?
˜
Ú
, Feichtinger
ï
Ä
Wieneramalgam
˜
m
i
\
'
X
!
ò
È
†
é
ó
5
Ÿ
±
9
E
Š
(
J
.
Heil
3
©
z
[9]
¥
½
Â
\
Wieneramalgam
˜
m
,
¿
y
²
\
Wieneramalgam
˜
m
ƒ
A
5
Ÿ
.
‘
X
Wieneramalgam
˜
m
ï
á
,
²
;
Ž
f
3
Wieneramalgam
˜
m
þ
k
.
5
•
k
é
õ
DOI:10.12677/pm.2023.1351251220
n
Ø
ê
Æ
Ç
˜
é
ï
Ä
.Cordero,D
0
Elia
Ú
Trapasso
3
©
z
[10]
¥
ï
Ä
'
u
a
τ
–‡
©
Ž
f
Op
τ
(
a
)
3
˜
m
Ú
Wieneramalgam
˜
m
¥
ë
Y5
.
Ÿ
²
Ú
ÿ
í
3
©
z
[11]
¥y
²
üa
È
©
Ž
f
3
·
Ü
‰
ê
˜
m
þ
k
.
5
.Cunanan
Ú
Tsutsui
3
©
z
[12]
¥
|
^
ª
Ç
˜
—
©
)
Ž
f
Ú
4
Œ
Ø
ª
ï
Ä
Wieneramalgam
˜
m
,
Ž
f
k
.
5
,
„
Ñ
I
O
Wieneramalgam
˜
m
Ú
ˆ
•
É
5
Wieneramalgam
˜
m
ƒ
m
i
\
'
X
.
©
ï
Ä
Hardy-Littlewood
4
Œ
Ž
f
3
W
(
F
L
p
,L
q
)
¥
k
.
5
Ú
Wieneramalgam
˜
m
¥
f
(1
,
1)
5
.
2.
ý
•
£
Î
Ò
½
Â
:
é
u
?
¿
x
∈
R
n
,
½
Â
|
x
|
2
=
x
·
x
,
Ù
¥
x
·
y
´
R
n
þ
I
þ
È
.
C
∞
0
(
R
n
)
´
R
n
þ
ä
k
;
|
8
Ã
¡
Œ
‡
¼
ê
˜
m
.
S
(
R
n
)
´
R
n
þ
1
w
„
ü
¼
ê
˜
m
.
S
0
(
R
n
)
´
S
(
R
n
)
ÿ
À
é
ó
˜
m
,
•
¡
…
O
©
Ù
˜
m
.
e
f,g
∈
L
2
,
K
ü
‡
¼
ê
f,g
S
È
½
Â
•
<f,g>
=
Z
R
n
f
(
t
)
g
(
t
)d
t.
§
*
Ð
S
0
×
S
•
Œ
±
d
<
·
,
·
>
L
«
.
1
≤
p
≤∞
, Fourier-Lebesgue
˜
m
½
Â
•
F
L
p
(
R
n
) =
{
f
∈S
0
(
R
n
) :
•
3
h
∈
L
p
(
R
n
)
,
ˆ
h
=
f
}
.
e
f
∈
L
1
(
R
n
),
K
f
Fourier
C
†
½
Â
•
ˆ
f
(
ξ
) =
F
f
(
ξ
) =
R
R
n
e
−
2
πix
·
ξ
f
(
x
)d
x
.
²
£
Ž
f
Ú
^
=
C
†
½
Â
•
T
h
f
(
t
) =
f
(
t
−
h
)
Ú
M
ω
f
(
t
) =
e
2
πiωt
f
(
t
).
w
,
F
(
T
h
f
) =
M
−
h
ˆ
f
,
F
(
M
ω
f
) =
T
ω
ˆ
f
,
M
ω
T
h
=
e
2
πihω
T
h
M
ω
.
e
f
∈
L
p
(
R
n
),
g
∈
L
q
(
R
n
),1
≤
p,q
≤∞
,
½
Â
f,g
ò
È
•
(
f
∗
g
)(
x
) =
R
R
n
f
(
x
−
y
)
g
(
y
)d
y
.
Î
Ò
B
1
→
B
2
L
«
¼
ê
˜
m
B
1
ë
Y
i
\
¼
ê
˜
m
B
2
¥
.
k
‰
Ñ
Hardy-Littlewood
4
Œ
Ž
f
Ú
Wieneramalgam
˜
m
½
Â
.
½
Â
2.1
[13]
e
f
∈
L
1
loc
(
R
n
),
f
¥
%
Hardy-Littlewood
4
Œ
¼
ê
Mf
½
Â
•
Mf
(
x
) = sup
r>
0
1
|
B
(
x,r
)
|
Z
B
(
x,r
)
|
f
(
y
)
|
d
y,
Ù
¥
B
(
x,r
)
´
±
x
•
¥
%
,
r
•
Œ
»
m
¥
,
=
B
(
x,r
)=
{
y
∈
R
n
:
|
x
−
y
|
<r
}
,(
{P
B
(0
,r
)
•
B
(
r
)).
Ž
f
M
:
f
7→
Mf
¡
•
Hardy-Littlewood
4
Œ
Ž
f
.
DOI:10.12677/pm.2023.1351251221
n
Ø
ê
Æ
Ç
˜
é
Hardy-Littlewood
4
Œ
¼
ê
Mf
•
Œ
±
Ï
L
ò
È
/
ª
L
«
.
½
Â
2.1
[13]
P
v
n
•
R
n
¥
ü
¥
B
(1)
ÿ
Ý
,
@
o
Mf
(
x
) = sup
r>
0
(
|
f
|∗
ϕ
r
)(
x
)
,
Ù
¥
ϕ
(
y
) =
1
v
n
χ
B
(1)
(
y
),
ϕ
r
(
y
) =
1
r
n
ϕ
(
y
r
).
½
Â
2.2
[7]
é
u
?
‰
f
∈
W
(
L
1
,L
∞
)(
R
n
),
'
u
I
•
¼
ê
g
∈
W
(
L
∞
,L
1
)(
R
n
)
á
ž
Fourier
C
†
(STFT)
½
Â
•
V
g
f
(
x,ω
) :=
Z
R
n
f
(
t
)
g
(
t
−
x
)
e
−
2
πiωt
d
t
=
<f,M
ω
T
x
g>,
(
x,ω
)
∈
R
n
.
w
,
k
V
g
f
(
x,ω
) =
\
(
f
·
T
x
¯
g
)(
ω
)
,
(
x,ω
)
∈
R
n
.
e
g
∈
S
…
f
∈
S
0
,
K
V
g
f
3
R
2
n
þ
´
˜
—
ë
Y
.
½
Â
2.3
[8]
g
∈
C
∞
0
(
R
n
)
…
÷
v
k
g
k
2
=1,1
≤
p,q
≤∞
,
½
Â
Wieneramalgam
˜
m
W
(
F
L
p
,L
q
)
X
e
f
∈
L
p
loc
(
R
n
) :
k
f
k
W
(
F
L
p
,L
q
)
=
kk
fT
x
g
k
F
L
p
k
L
q
x
<
∞
,
T
½
Â
¿Ø
•
6
u
g
À
J
.
,
,
e
B,C
þ
•
Banach
˜
m
,
K
Wieneramalgam
˜
m
W
(
B,C
)
Œ
a
q
½
Â
.
e
¡
0
©
Ì
‡
^
Ú
n
.
Ú
n
2.1
[9]
B
i
,C
i
(
i
= 1
,
2
,
3)
´
Banach
˜
m
,
W
(
B
i
,C
i
)
•
ƒ
Au
B
i
,C
i
Wiener amalgam
˜
m
.
(1)
é
u
?
¿
f
1
∈
B
1
,g
1
∈
B
2
,
•
3
~
ê
c
1
>
0,
¦
k
f
1
∗
g
1
k
B
3
≤
c
1
k
f
1
k
B
1
k
g
1
k
B
2
,
…
é
u
?
¿
f
2
∈
C
1
,g
2
∈
C
2
,
•
3
~
ê
c
2
>
0,
¦
k
f
2
∗
g
2
k
C
3
≤
c
2
k
f
2
k
C
1
k
g
2
k
C
2
,
K
•
3
~
ê
c>
0 ,
¦
é
u
?
¿
f
∈
W
(
B
1
,C
1
)
,g
∈
W
(
B
2
,C
2
),
k
k
f
∗
g
k
W
(
B
3
,C
3
)
≤
c
k
f
k
W
(
B
1
,C
1
)
k
g
k
W
(
B
2
,C
2
)
.
(2)
e
B
1
→
B
2
…
C
1
→
C
2
,
K
k
W
(
B
1
,C
1
)
→
W
(
B
2
,C
2
).
A
O
/
,
é
u
1
≤
p
i
,q
i
≤∞
,i
= 1
,
2,
…
p
1
≥
p
2
,q
1
≤
q
2
,
K
k
W
(
L
p
1
,L
q
1
)
→
W
(
L
p
2
,L
q
2
)
.
(3)
é
u
?
¿
u
∈
W
(
B
1
,C
1
)
∩
W
(
B
2
,C
2
)
…
θ
∈
[0
,
1],
K
u
∈
W
(
B
3
,C
3
)
…
DOI:10.12677/pm.2023.1351251222
n
Ø
ê
Æ
Ç
˜
é
k
u
k
W
(
B
3
,C
3
)
≤k
u
k
θ
W
(
B
1
,C
1
)
k
u
k
1
−
θ
W
(
B
2
,C
2
)
(4)
e
B
0
,C
0
©
O
´
Banach
˜
m
B,C
é
ó
ÿ
À
˜
m
,
…
C
∞
0
3
B
Ú
C
¥
þ
È
—
,
K
W
(
B,C
)
é
ó
˜
m
W
(
B,C
)
0
=
W
(
B
0
,C
0
).
Ú
n
2.2
[13]Hardy-Littlewood
4
Œ
Ž
f
M
´
f
(1
,
1)
.
Ž
f
.
=
•
3
~
ê
C
=
C
n
,
¦
é
?
¿
λ>
0
9
f
∈
L
1
(
R
n
)
k
|{
x
∈
R
n
:
Mf
(
x
)
>λ
}|≤
C
λ
k
f
k
L
1
.
Ú
n
2.3
e
1
≤
p,q
≤∞
,
K
W
(
F
L
p
,L
q
)
∗
W
(
F
L
∞
,L
1
)
→
W
(
F
L
p
,L
q
)
,
=
•
3
˜
‡
~
ê
C
,
¦
é
u
?
¿
f
∈
W
(
F
L
p
,L
q
)
,g
∈
W
(
F
L
∞
,L
1
),
k
k
f
∗
g
k
W
(
F
L
p
,L
q
)
≤
C
k
f
k
W
(
F
L
p
,L
q
)
k
g
k
W
(
F
L
∞
,L
1
)
.
y
d
Young
Ø
ª
k
L
q
∗
L
1
→
L
q
.
Š
â
Ú
n
2.1(1)
Œ
•
,
·
‚
•
I
y
:
F
L
p
∗F
L
∞
→F
L
p
.
F
L
p
∗F
L
∞
=
F
(
L
p
·
L
∞
)
→F
L
p
,
=
F
L
p
∗F
L
∞
→F
L
p
.
(
Ø
y
.
3.
½
n
9
y
²
Ä
k
‰
Ñ
Hardy-Littlewood
4
Œ
Ž
f
3
Wieneramalgam
˜
m
W
(
F
L
p
,L
q
)
¥
k
.
5
.
½
n
3.1
é
u
1
<p,q<
∞
,
e
f
∈
W
(
F
L
p
,L
q
),
K
Hardy-Littlewood
4
Œ
Ž
f
M
´
W
(
F
L
p
,L
q
)
→
W
(
F
L
p
,L
q
)
k
.
.
=
k
Mf
k
W
(
F
L
p
,L
q
)
≤
C
k
f
k
W
(
F
L
p
,L
q
)
.
y
Ï
•
Mf
(
x
) = sup
r>
0
(
|
f
|∗
ϕ
r
)(
x
),
d
Fourier
C
†
Ä
5
Ÿ
Ú
Cauchy-Schwartz
Ø
ª
k
ϕ
r
(
x
)
k
W
(
F
L
∞
,L
1
)
=
kk
ϕ
r
(
x
)
T
y
g
(
x
)
k
F
L
∞
x
k
L
1
y
≤kk
ϕ
r
(
x
)
T
y
g
(
x
)
k
L
1
x
k
L
1
y
≤
Z
R
n
|
ϕ
r
(
x
)
|
2
d
x
1
2
Z
R
n
|
g
(
x
−
y
)
|
2
d
x
1
2
L
1
y
≤
C
1
Z
R
n
|
g
(
x
−
y
)
|
2
d
x
1
2
L
1
y
,
Ù
¥
C
1
=
R
R
n
|
ϕ
r
(
x
)
|
2
d
x
1
2
=
π
1
2
v
n
r
n
.
DOI:10.12677/pm.2023.1351251223
n
Ø
ê
Æ
Ç
˜
é
e
y
R
R
n
|
g
(
x
−
y
)
|
2
d
x
1
2
L
1
y
Œ
È
.
d
Cauchy-Schwartz
Ø
ª
k
Z
R
n
|
g
(
x
−
y
)
|
2
d
x
1
2
L
1
y
=
Z
R
n
Z
R
n
(
|
g
(
x
−
y
)
|
χ
B
(
x,α
)
(
y
))
2
d
x
1
2
χ
B
(
α
)
(
y
)d
y
≤
Z
R
n
Z
R
n
|
g
(
x
−
y
)
χ
B
(
x,α
)
(
y
)
|
2
d
x
1
2
2
d
y
1
2
Z
B
(
α
)
χ
B
(
α
)
(
y
)
2
d
y
1
2
≤
C
2
k
g
k
W
(
L
2
,L
2
)
,
Ù
¥
χ
B
(
x,α
)
(
y
)
•
I
•
¼
ê
,
α>
0,
B
(
x,α
)
´
±
x
•
¥
%
,
α
•
Œ
»
¥
.
k
g
k
W
(
L
2
,L
2
)
=
k
g
k
L
2
= 1,
¤
±
R
R
n
|
g
(
x
−
y
)
|
2
d
x
1
2
L
1
y
≤
C
2
.
¤
±
k
ϕ
r
(
x
)
k
W
(
F
L
∞
,L
1
)
≤
C
(
C
=
C
1
C
2
),
=
ϕ
r
(
x
)
∈
W
(
F
L
∞
,L
1
).
Ï
d
,
Š
â
Ú
n
2.3
Œ
•
k
Mf
k
W
(
F
L
p
,L
q
)
≤k
ϕ
r
k
W
(
F
L
∞
,L
1
)
k
f
k
W
(
F
L
p
,L
q
)
≤
C
k
f
k
W
(
F
L
p
,L
q
)
.
½
n
y
.
í
Ø
3.2
é
u
1
<q
≤∞
,
e
f
∈
W
(
L
1
,L
q
)
,
¯
g
∈
W
(
L
∞
,L
1
),
…
Hardy-Littlewood
4
Œ
Ž
f
M
´
L
p
→
L
p
k
.
,
K
Ž
f
M
•
´
W
(
L
1
,L
q
)
→
W
(
F
L
∞
,L
q
)
k
.
.
y
-
Q
= [0
,
1)
n
L
«
ü
•
N
,
K
k
Mf
k
W
(
F
L
∞
,L
q
)
=
kk
Mf
(
x
)
T
y
g
(
x
)
k
F
L
∞
x
k
L
q
y
≤kk
Mf
(
x
)
T
y
g
(
x
)
k
L
1
x
k
L
1
y
=
Z
R
n
Z
R
n
|
Mf
(
x
)
T
y
g
(
x
)
|
d
x
q
d
y
1
q
=
Z
R
n
X
k
∈
Z
n
Z
Q
+
k
|
Mf
(
x
)
T
y
g
(
x
)
|
d
x
!
q
d
y
!
1
q
≤
Z
R
n
X
k
∈
Z
n
sup
Q
+
k
T
y
g
(
x
)
Z
Q
+
k
|
Mf
(
x
)
|
d
x
!
q
d
y
!
1
q
DOI:10.12677/pm.2023.1351251224
n
Ø
ê
Æ
Ç
˜
é
=
Z
R
n
X
k
∈
Z
n
sup
Q
+
k
T
y
g
(
x
)
!
q
Z
Q
+
k
|
Mf
(
x
)
|
d
x
q
d
y
!
1
q
≤
Z
R
n
X
k
∈
Z
n
sup
Q
+
k
T
y
g
(
x
)
!
q
Z
Q
+
k
|
f
(
x
)
|
d
x
q
d
y
!
1
q
≤
X
k
∈
Z
n
sup
Q
+
k
T
y
g
(
x
)
L
∞
Z
Q
+
k
|
f
(
x
)
|
d
x
L
q
≤k
¯
g
k
W
(
L
∞
,L
1
)
k
f
k
W
(
L
1
,L
q
)
¯
g
∈
W
(
L
∞
,L
1
),
=
k
Mf
k
W
(
F
L
∞
,L
q
)
≤
C
k
f
k
W
(
L
1
,L
q
)
.
½
n
y
.
¯
¤
±•
, Hardy-Littlewood
4
Œ
Ž
f
3
Lebesgue
˜
m
´
f
(1
,
1)
.
Ž
f
.
Š
â
Wieneramal-
gam
˜
m
†
Lebesgue
˜
m
ƒ
m
'
X
,
·
‚
y
²
Hardy-Littlewood
4
Œ
Ž
f
3
Wieneramalgam
˜
m
¥
•
´
f
(1
,
1)
.
Ž
f
.
½
n
3.3
Hardy-Littlewood
4
Œ
Ž
f
M
3
Wieneramalgam
˜
m
¥
´
f
(1
,
1)
.
Ž
f
.
=
•
3
~
ê
C
,
¦
é
?
¿
λ>
0
9
f
∈
W
(
L
1
,L
1
)
k
|{
x
∈
R
n
:
Mf
(
x
)
>λ
}|≤
C
λ
k
f
k
W
(
L
1
,L
1
)
.
y
du
L
1
=
W
(
L
1
,L
1
),
Š
â
Ú
n
2.2
Œ
•
|{
x
∈
R
n
:
Mf
(
x
)
>λ
}|≤
C
λ
k
f
k
W
(
L
1
,L
1
)
.
½
n
y
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
(11601434)
"
ë
•
©
z
[1]Stein,E.M.(1970)SingularIntegralsandDifferentiabilityPropertiesofFunctions.Princeton
UniversityPress,Princeton,149-182.
[2]Kinnunen,J.(1997)TheHardy-LittlewoodMaximalFunctionofaSobolevFunction.
Israel
JournalofMathematics
,
100
,117-124.https://doi.org/10.1007/BF02773636
[3]Diening,L.(2004)MaximalFunctiononGeneralizedLebesgueSpaces
L
p
(
·
)
.
Mathematical
InequalitiesandApplications
,
7
,245-253.https://doi.org/10.7153/mia-07-27
DOI:10.12677/pm.2023.1351251225
n
Ø
ê
Æ
Ç
˜
é
[4]Bennett,C.,DeVore,R.A.andSharpley,R.C.(1981)Weak-
L
∞
andBMO.
AnnalsofMathe-
matics
,
113
,601-611.https://doi.org/10.2307/2006999
[5]Wiener,N.(1926)OntheRepresentationofFunctionsbyTrigonometricalIntegrals.
Mathe-
matischeZeitschrift
,
24
,575-616.https://doi.org/10.1007/BF01216799
[6]Wiener,N.(1932)TauberianTheorems.
AnnalsofMathematics
,
33
,1-100.
https://doi.org/10.2307/1968102
[7]Wiener,N.(1988)TheFourierIntegralandCertainofItsApplications(CambridgeMathe-
maticalLibrary).CambridgeUniversityPress,Cambridge.
[8]Feichtinger,H.G.(1983) BanachConvolutionAlgebrasof WienerType.
Colloquia Mathematica
SocietatisJ´anosBolyai
,
35
,509-524.
[9]Heil,C.(2003)AnIntroductiontoWeightedWienerAmalgams.In:Krishna,M.,Radha,R.
andThangavelu,S.,Eds.,
WaveletsandTheirApplications
,AlliedPublishers,NewDelhi,
183-216.
[10]Cordero,E.,D’Elia,L.andTrapasso,S.I.(2019)NormEstimatesfor
τ
-Pseudodifferential
Operators in Wiener Amalgam and Modulation Spaces.
JournalofMathematicalAnalysisand
Applications
,
471
,541-563.https://doi.org/10.1016/j.jmaa.2018.10.090
[11]Wei,M.Q.andYan,D.Y.(2018)TheBoundednessofTwoClassesofOscillatorIntegral
OperatorsonMixedNormSpace.
AdvancesinMathematics(China)
,
47
,71-80.
[12]Cunanan,J.andTsutsui,Y.(2016)TraceOperatorsonWienerAmalgamSpaces.
Journalof
FunctionSpaces
,
2016
,ArticleID:1710260.https://doi.org/10.1155/2016/1710260
[13]
¶
]
.
y
“
©
Û
Ä
:
[M].
®
:
®
“
‰
Œ
Æ
Ñ
‡
,2008.
DOI:10.12677/pm.2023.1351251226
n
Ø
ê
Æ