设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(5),2340-2363
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.125238
äk({Z*Ð.ù•§
žm•6áÚf
HHHaaa§§§ààà
∗
Ü“‰ŒÆêƆÚOÆ§[‹=²
ÂvFϵ2023c428F¶¹^Fϵ2023c521F¶uÙFϵ2023c529F
Á‡
©ïÄ‘k ({Z*Ð. ù•§3˜mH
t
¥)•žmÄåÆ1•"Äky²š‚ 5
‘f(u)3g.^‡e•§)·½5§2|^ ¼ê•{y)L§{U(t,τ)}ìC
;5§•yžm•6áÚf•35"
'…c
({Z§Â ¼ê§žm•6áÚf§*Ð.ù•§
TheTime-DependentGlobal
AttractorsforanExtensible
BeamEquationwithStructural
Damping
RuiGuo,XuanWang
∗
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.28
th
,2023;accepted:May21
st
,2023;published:May29
th
,2023
∗ÏÕŠö"
©ÙÚ^:Ha,à.äk({Z*Ð.ù•§žm•6áÚf[J].A^êÆ?Ð,2023,12(5):2340-2363.
DOI:10.12677/aam.2023.125238
Ha§à
Abstract
Thispaperstudieslongtimebehaviorofsolutionsforanextensiblebeamequation
withstructuraldampingintheH
t
space.Inthefirstinstance,we showthattheglobal
well-posednessofsolutionsfortheequationwithnonlinearityf(u)undersubcritical
condition.Moreover,theasymptoticcompactnessofthesolutionprocess{U(t,τ)}
isprovedbyusingthemethodofcontractionfunction.Finally,theexistenceofthe
time-dependentglobalattractorisgained.
Keywords
StructuralDamping,ContractionFunction,TheTime-DependentAttractors,
ExtensibleBeamEquation
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Ω´R
N
(N>5) ¥äk1w>.k.•,•ÄXe‘k({Z*Ð.ù•§











ε(t)∂
2
t
u+∆
2
u+γ(−∆)
θ
∂
t
u+f(u) = g(x),x∈Ω,t>τ,
u(x,t) = 0,x∈∂Ω,t>τ,
u(x,τ) = u
0
(x),∂
t
u(x,τ) = u
1
(x),x∈Ω,
(1.1)
Ù¥θ∈(
1
2
,1),γ>0 ,f(u)´š‚5‘, g(x) ´å‘.
31950c,Woinowsky−Krieger 3[1]¥JÑXeù•§:
∂
2
t
u+∆
2
u−M(
Z
Ω
|∇u|
2
dx)∆u= F(x,u,∂
t
u,∆∂
t
u).(1.2)
3ù•§$ÄL§¥, duXÚgÏÚÜƒpŠ^ÚåXÚUþÅìÑÑy–¡
•{Z, { Z˜„Œ©•r{Z, f{Z†0uüöƒm({ Z. éu•§(1.1) ¥ε(t)≡C
DOI:10.12677/aam.2023.1252382341A^êÆ?Ð
Ha§à
žïÄ®k´a¤J. X©[2]ïáš‚5‘3g.^‡ek•‘ÛáÚfÚ•êá
Úf•35, ©[3]‘kšÛÜf{Z*Ð.ù•§3g.^‡eÛáÚf•35,
0<θ61ž,©[4]¥ïÄ˜ašÛÜ*Ð.ù•§k•‘;ÛáÚfÚ•êáÚf,
©[5]Ñ0 <θ61 ž,f(u) äk•`g.O•,ÙO••ê÷v:1 6p<p
θ
=
N+4θ
(N−4)
+
.
•§¥(t)6≡Cž, ¯K(1.1) C•\E,k, DÚ¿Âþ£ãÄåXÚÛáÚ
f, •êáÚfÚ. £áÚfØUéÐ/•x¯K(1.1)•žmÄåÆ1•. u´Conti JÑ
žm•6˜mgŽ,ddiåïÄžm•6áÚf9Œ.©[6]ïáXe.:
ε(t)∂
2
t
u−∆u+γ(−∆)
α
∂
t
u+f(u) = g(x),(1.3)
ùpα∈(0,
1
2
). „Ñ1 6p6p
∗∗
=
N+2
N−2
(N>3) ž)´•3, 1 6p6p
∗
=
N+4α
N−2
(N>
3) ž)´[-½, ?Ñžm•6áÚf•35. ©[7]Ú©[8]©O?Øù•§ÚPlate
•§žm•6áÚf•35, 8cÿ™kéäk({Z*Ð.ù•§žm•6áÚf
?1ïÄ. ɱþ©zéu, ©Äk^%C•{y²¯K(1.1) )·½5, 2|^ ¼
ê•{yéAL§ìC;5,•žm•6áÚf•35.
2.ý•£
Äk,•{',·‚¦^±e 
L
p
= L
p
(Ω),H
k
= H
k
(Ω),V
1
= H
1
0
(Ω),
V
2
= H
1
0
∩H
2
,k·k= k·k
L
2
,k·k
p
= k·k
L
p
,
Ù¥p>1. Kki\V
2
→→L
2
→V
−2
,½ÂŽfA: V
2
→V
−2
,
hAu,υi= h∆u,∆υi, ∀u,υ∈V
2
,
KA´L
2
þgŠŽf…3V
2
þî‚, ·‚•Œ±½ÂA˜A
s
.FËA˜mV
s
= D(A
s
4
)
äk±eSȆ‰ê:
hu,υi
V
s
= hA
s
4
u,A
s
4
υi,kuk
V
s
= kA
s
4
uk, s∈R.
K¯K(1.1)Œ±¤e¡Žf/ª:











ε(t)∂
2
t
u+Au+γA
θ
2
∂
t
u+f(u) = g(x),x∈Ω,t>τ,
u(x,t) = 0,x∈∂Ω,t>τ,
u(x,τ) = u
0
(x),∂
t
u(x,τ) = u
1
(x),x∈Ω.
(2.1)
½Âžm•6˜m•:
H
t
= V
2
×L
2
,
DOI:10.12677/aam.2023.1252382342A^êÆ?Ð
Ha§à
¿…ƒéA‰ê•:
k(u,∂
t
u)k
2
H
t
= kuk
2
V
2
+(t)k∂
t
uk
2
.
-C•~ê,e©¥Ñy3ØÓªf¥z˜‡CL«´éA~êŠ,·‚•^
C
i
,i∈N5L«Ù¦~ê. (t),f(u),g÷ve^‡:
(C
1
)¼êε(t) ∈C
1
(R)´˜‡üN4~k.¼ê,¿÷v
lim
t→+∞
ε(t) = 0,(2.2)
…•3~êL>0,¦
sup
t∈R
[|ε(t)|+|ε
0
(t)|] 6L.(2.3)
(C
2
)f∈C
1
(R),s∈R÷v:
u
f
= liminf
|s|→∞
f(s)
s
>−λ
1
,(2.4)
Ù¥λ
1
>0•ŽfA1˜AŠ. …N>5žk
|f
0
(s)|6C(1+|s|
p−1
),1 6p<p
θ
=
N+2θ
N−4
.(2.5)
(C
3
)g∈L
2
(Ω),(u
0
,u
1
) ∈H
τ
,…kk(u
0
,u
1
)k
H
τ
6R.
51d(2.4)Œ,•3~êη,0 <λ
1
−η1 ž,¦
F(s) >−
η
2
s
2
−C,f(s)s>−ηs
2
−C.(2.6)
Ù¥F(u) =
R
u
0
f(r)dr.
52N64 ž,w,kV
2
→L
∞
,¤±·‚X-?ØN>5 ž(J.
Ún2.1[2]X,BÚY´n‡Banach˜m, ÷vi\X→→B→Y,
W= {u∈L
p
(0,T;X)|u
t
∈L
1
(0,T;Y)},1 6p<∞,
W
1
= {u∈L
∞
(0,T;X)|u
t
∈L
r
(0,T;Y)},r>1.
K
W→→L
p
(0,T;B),W
1
→→C([0,T];B).
½n2.1[9]U(·,·) ´{H
t
}
t∈R
þ˜‡L§, ¿…k˜‡.£áÂxB= {B
t
}
t∈R
. d,b
é∀>0 ,•3T() 6t, Φ
t
T
∈C(B
T
),¦
DOI:10.12677/aam.2023.1252382343A^êÆ?Ð
Ha§à
kU(t,T)x−U(t,T)yk6+Φ
t
T
(x,y), ∀x,y∈B
T
,
é?¿½t∈R, KU(·,·)´.£ìC;.
½Â2.1 [9]{H
t
}
t∈R
´˜xBanach˜m, C= {C
t
}
t∈R
´{H
t
}
t∈R
˜x˜—k.f8. ·
‚¡½Â3H
t
×H
t
þ¼êΦ
t
τ
(·,·) •C
τ
×C
τ
þ ¼ê, XJé?¿½t∈R, ?¿S
{x
n
}
∞
n=1
⊂C
τ
,•3˜‡fS{x
n
k
}
∞
k=1
⊂{x
n
}
∞
n=1
,¦
lim
k→∞
lim
l→∞
Φ
t
τ
(x
n
k
,x
n
l
) = 0, ∀τ6t.
·‚^C(C
τ
)L«C
τ
×C
τ
 ¼ê8Ü.
Ún2.2[10]Φ,Ψ,Λ´šKëY¼ê, …÷v‡©Øª
Ψ
0
(t) 6Φ(t)Ψ(t)+Λ(t),t>0,
K
Ψ(t) 6Ψ(0)e
R
t
0
Φ(s)ds
+
Z
t
0
Λ(s)e
R
t
s
Φ(τ)dτ
ds.
XJØª
Ψ
0
(t)+βΦ(t) 6Λ(t),
¤á,Ù¥β>0 .K
Ψ(t) 6e
−βt
Ψ(0)+
Z
t
0
e
−β(t−s)
Λ(s)ds
.
Ún2.3[10]1 6p
1
,p
2
6∞,0 6s<l(s,l∈Z
+
).e
ϑ=
n
p
−
n
p
1
−s
n
p
2
−
n
p
1
−l
÷v
s
l
6ϑ<1.K
kuk
s,p
6Ckuk
1−ϑ
0,p
1
kuk
ϑ
l,p
2
.
½n2.2 [11](Banach−Alaoglu½n)X´˜‡g‡Banach˜m, eB⊂X´k.,
KB3fÿÀ˜mX¥ƒé;.
½Â2.2[12]{H
t
}
t∈R
´˜xD‰˜m, VëêŽfx{U(t,τ): H
τ
→H
t
,t>τ,τ∈R}÷
v±e5Ÿ:
1)é?¿τ∈R,U(τ,τ) = Id´H
τ
þðŽf;
2)éz‡σ∈RÚ?¿t>τ>σ,U(t,τ)U(τ,σ) = U(t,σ).
K¡U(t,τ)´˜‡L§.
½Â2.3[12]XJé?¿t∈R, •3˜‡~êR>0, ¦C
t
⊂{z∈H
t
:kzk
H
t
6R}=
DOI:10.12677/aam.2023.1252382344A^êÆ?Ð
Ha§à
B
t
(R), K¡k.8C
t
⊂H
t
8ÜxC= {C
t
}
t∈R
´˜—k..
½Â2.4 [12] XJé?¿R>0,•3~êt
0
(t,R) 6t,¦τ6t−t
0
⇒U(t,τ)B
τ
(R) ⊂B
t
,
K¡˜—k.8xB= {B
t
}
t∈R
´L§U(t,τ)žm•6áÂ8.
½Â2.5[12]XJB={B
t
}
t∈R
˜—k., …é?¿R>0, •3~êt
0
=t
0
(t,R)6t, ¦
τ6t
0
⇒U(t,τ)B
τ
(R) ⊂B
t
,K¡B´.£áÂ.
½Â2.6[12]L§U(t,τ) žm•6áÚf´÷vXe5Ÿ•xA= {A
t
}
t∈R
:
1)z‡A
t
3H
t
¥´;;
2)A´.£áÚ,=éz‡˜—k.xC= {C
t
}
t∈R
,4•
lim
τ→−∞
δ
t
(U(t,τ)C
τ
,A
t
) = 0
¤á,Ù¥
δ
t
(B,C)=sup
x∈B
inf
y∈C
kx−yk
H
t
L«8ÜBÚCHausdorffŒål.
½n2.3[12]XJL§U(t,τ)ìC;, =8ÜK = {K= {K
t
}
t∈R
: K
t
⊂H
t
•;8, K•.£
áÚ}´š˜;,Kžm•6áÚfA•3…•˜.
½Â2.7[12]XJ∀t>τ,U(t,τ)A
τ
= A
t
,K¡žm•6áÚfA= {A
t
}
t∈R
´ØC.
½n2.4[12]U(·,·) •Š^uBanach ˜mx{H
t
}
t∈R
L§, KU(·,·) kžm•6Ûá
ÚfU
∗
= {A
∗
t
}
t∈R
÷v
A
∗
t
=
\
s6t
[
τ6s
U(t,τ)B
τ
,
…=
(i)U(·,·) •3žm•6áÂ8xB= {B
t
}
t∈R
;
(ii)U(·,·) ´ìC;.
3.·½5
½n3.1e^‡(C
1
)-(C
3
)¤á,K¯K(2.1)k˜‡f)u,…(u,∂
t
u) ∈L
∞
([τ,T];
H
t
),∂
t
u∈L
2
([τ,T];V
θ
),…keª¤á
k(u,∂
t
u)k
2
H
t
+
Z
t
τ
k∂
t
u(s)k
2
V
θ
ds6C
0
, ∀t>τ,(3.1)
Ù¥C
0
= C(R,δ,kgk).d, 1 6p<p
θ
=
N+2θ
N−4
ž)„äk±e5Ÿ:
(i)é?¿t>s>τÚ(u,∂
t
u) ∈H
t
keUþðª¤á
DOI:10.12677/aam.2023.1252382345A^êÆ?Ð
Ha§à
E(u(s),∂
t
u(s))+
1
2
Z
t
s
ε
0
(r)k∂
t
u(r)k
2
dr = E(u(t),∂
t
u(t))+γ
Z
t
s
k∂
t
u(r)k
2
V
θ
dr,(3.2)
Ù¥
E(u(t),∂
t
u(t)) =
1
2
(kuk
2
V
2
+ε(t)k∂
t
uk
2
)+
Z
Ω
F(u)dx−hg,ui.
(ii) z=u−v•¯K(2.1) éAuЊ(u
0
,u
1
),(v
0
,v
1
) ), KT)3˜mV
2−θ
×V
−θ
¥
LipschitzëY,=éτ6t6T,k
k(z,∂
t
z)(t))k
2
V
2−θ
×V
−θ
6C
3
k(z,∂
t
z)(τ)k
2
V
2−θ
×V
−θ
,(3.3)
Ù¥C
3
= max{C
1
,C
2
}= max{{2γ+bδL+δ,L+bL},{
17δ
8
+
δL
2
+δbL,bδγ,b}},ùpδ,b¿
©,¿…z„÷veª
kz(t)k
2
V
2−θ
+ε(t)k∂
t
z(t)k
2
V
−θ
6e
−bt
(kz(τ)k
2
V
2−θ
+ε(τ)k∂
t
z(τ)k
2
V
−θ
)
+C
3
Z
t
τ
e
−b(t−s)
(k∂
t
z(s)k
2
+kz(s)k
2
V
2
)ds.(3.4)
(iii)é?¿τ<ka<a6t6T,(u,∂
t
u,∂
2
t
u) ∈L
∞
([a,T];V
2+θ
×V
2−θ
×V
−θ
)∩L
2
([a,T];V
4
×V
2
×L
2
(Ω)),keª¤á
kuk
2
V
2+θ
+k∂
t
uk
2
V
2−θ
+ε(t)k∂
2
t
uk
2
V
−θ
+
Z
t+1
t
(ku(s)k
2
V
4
+k∂
t
u(s)k
2
V
2
+k∂
2
t
u(s)k
2
)ds
6(1+
30
7ν
)
e
C
0
(t−τ)
t
2
θ
+(
2
γ
+
16
7
)C
0
(t−ka)
1−θ
2−θ
+(
2
νγ
+
16
7ν
)h(t)+
8
7
C
4
,(3.5)
Ù¥k>0,ν= min{
9
8
δ,γ−δL+δ},h(t) =
e
C
0
(ka−τ)
e
C
0
(t−ka)
(ka)
2
θ
(t−ka)
1
2−θ
,C
4
= C(R,δ,kgk,L) .
y²é•§(2.1) ¦±∂
t
uk
d
dt
E(u,∂
t
u)+γk∂
t
uk
2
V
θ
−
1
2
ε
0
(t)k∂
t
uk
2
= 0,(3.6)
Ù¥
E(u,∂
t
u) =
1
2
(kuk
2
V
2
+ε(t)k∂
t
uk
2
)+
Z
Ω
F(u)dx−hg,ui.
ò(3.6)3[s,t]þÈ©Œ(3.2).d51, H¨olderØª,Young Øª±9Poincar´eØªŒ
Z
Ω
F(u)dx>−
η
2
kuk
2
−C>−
η
2λ
1
kuk
2
V
2
−C(η).(3.7)
hg,ui6
1
4δ
2
kgk
2
+
δ
2
λ
1
kuk
2
V
2
.(3.8)
DOI:10.12677/aam.2023.1252382346A^êÆ?Ð
Ha§à
¤±k
E(u,∂
t
u) =
1
2
(ε(t)k∂
t
uk
2
+kuk
2
V
2
)+
Z
Ω
F(u)dx−hg,ui
>
1
2
(ε(t)k∂
t
uk
2
+(1−
η
λ
1
)kuk
2
V
2
)−hg,ui−C(η)
>dk(u,∂
t
u)k
2
H
t
−C(δ,kgk),(3.9)
Ù¥d= min{
1
2
,
1
2
−
η+2δ
2
2λ
1
}.é(3.6)lτtÈ©Œ
E(u(t),∂
t
u(t))+γ
Z
t
τ
k∂
t
u(s)k
2
V
θ
ds−
1
2
Z
t
τ
ε
0
(s)k∂
t
u(s)k
2
ds= E(u(τ),∂
t
u(τ)).(3.10)
dε(t)4~5Œ•
E(u(t),∂
t
u(t)) 6E(u(τ),∂
t
u(τ)).
Kk
k(u,∂
t
u)k
2
X
t
6C(R,δ,kgk).(3.11)
Ï•γ>0,2(Ü(3.11), k
Z
t
τ
k∂
t
u(s)k
2
V
θ
ds6C(R,δ,kgk).(3.12)
PC
0
= C(R,δ,kgk),2(Ü(3.11) Ú(3.12) Œ(3.1).
(ii)u,v••§(2.1) éAuЊ(u
0
,u
1
),(v
0
,v
1
)),Kz= u−v÷veª
ε(t)∂
2
t
z+Az+γA
θ
2
∂
t
z+f(u)−f(v) = 0.(3.13)
ò(3.13)†2A
−
θ
2
∂
t
z+2δz‰SÈk
d
dt
H
1
(z,∂
t
z)+2δkzk
2
V
2
+[2γ−2δε(t)]k∂
t
zk
2
−ε
0
(t)k∂
t
zk
2
V
−θ
−2δε
0
(t)h∂
t
z,zi
= −hf(u)−f(v),2A
−
θ
2
∂
t
z+2δzi,(3.14)
Ù¥
H
1
(z,∂
t
z) = ε(t)k∂
t
zk
2
V
−θ
+2δε(t)h∂
t
z,zi+kzk
2
V
2−θ
+γδkzk
2
V
θ
.
ϕV
2−θ
→V
θ
,¤±
|ε(t)h∂
t
z,zi|6ε(t)kA
−
θ
4
∂
t
zk·kA
θ
4
zk
6
ε(t)
2
k∂
t
zk
2
V
−θ
+
L
2
kzk
2
V
2−θ
,
δ¿©ž,
H
1
(z,∂
t
z) ∼ε(t)k∂
t
zk
2
V
−θ
+kzk
2
V
2−θ
.(3.15)
DOI:10.12677/aam.2023.1252382347A^êÆ?Ð
Ha§à
N=4 ž,é1<r<∞,kV
2
→L
r
; N>5ž,é0<δ1,k
2N
N−2(2−δ)
<
2N
N−4
,,k
V
2
→L
2N
N−4
; ϕ16p<p
θ
=
N+2θ
N−4
, ¤±k
N(p−1)
θ+2−δ
<
2N
N−4
, ?kV
2
→L
N(p−1)
θ+2−δ
. dH¨olderØ
ª,Young Øª±9¥Š½nŒ
|hf(u)−f(v),2A
−
θ
2
∂
t
z+2δzi|
6C
Z
Ω
(1+|u|
p−1
+|v|
p−1
)|z|(|A
−
θ
2
∂
t
z|+δ|z|)dx
6C(1+kuk
p−1
N(p−1)
θ+2−δ
+kvk
p−1
N(p−1)
θ+2−δ
)kzk
2N
N−2(2−δ)
(kA
−
θ
2
∂
t
zk
2N
N−2θ
+δkzk
2N
N−2θ
)
6C(1+kuk
p−1
V
2
+kvk
p−1
V
2
)kzk
V
2−δ
(kA
−
θ
2
∂
t
zk
V
θ
+δkzk
V
θ
)
6C
0
kzk
V
2
(k∂
t
zk+δkzk
V
2
)
6δk∂
t
zk
2
+
δ
8
kzk
2
V
2
+C
0
,(3.16)
Ù¥^
θ+2−δ
N
+
N−2(2−δ)
2N
+
N−2θ
2N
= 1,2−δ<2,θ<2.¤±é¿©b>0,ò(3.16) “\
(3.14)Œ
d
dt
H
1
(z,∂
t
z)+bH
1
(z,∂
t
z)
6[2−2δε(t)]k∂
t
zk
2
+[ε
0
(t)+bε(t)]k∂
t
zk
2
V
−θ
+δk∂
t
zk
2
+bkzk
2
V
2−θ
+2δkzk
2
V
2
+bδkzk
2
V
θ
+2δε
0
(t)h∂
t
z,zi+2δbε(t)h∂
t
z,zi+
δ
8
kzk
2
V
2
+C
0
.(3.17)

|2δε
0
(t)h∂
t
z,zi|62δLk∂
t
zkkzk
62δLk∂
t
zk
2
+
δL
2
kzk
2
V
2
.(3.18)
|2δbε(t)h∂
t
z,zi|6δbL(k∂
t
zk
2
+kzk
2
V
2
).(3.19)
(Ü(3.17)-(3.19),C
1
= max{2γ+bδL+δ,L+bL},C
2
= max{
17δ
8
+
δL
2
+δbL,bδγ,b},Kk
|(2γ−2δε(t))|k∂
t
zk
2
+|(ε
0
(t)+bε(t))|k∂
t
zk
2
V
−θ
+(2δL+δbL)k∂
t
zk
2
+δk∂
t
zk
2
6(2γ+bδL+δ)k∂
t
zk
2
+(L+bL)k∂
t
zk
2
V
−θ
6C
1
k∂
t
zk
2
.(3.20)
2δkzk
2
V
2
+bδγkzk
2
V
θ
+bkzk
2
V
2−θ
+
δL
2
kzk
2
V
2
+δbLkzk
2
V
2
+
δ
8
kzk
2
V
2
6(
17δ
8
+
δL
2
+δbL)kzk
2
V
2
+bδγkzk
2
V
θ
+bkzk
2
V
2−θ
6C
2
kzk
2
V
2
.(3.21)
DOI:10.12677/aam.2023.1252382348A^êÆ?Ð
Ha§à
ò(3.20)-(3.21)“\(3.17)
d
dt
H
1
(z,∂
t
z)+bH
1
(z,∂
t
z) 6C
3
(k∂
t
zk
2
+kzk
2
V
2
),(3.22)
Ù¥C
3
= max{C
1
,C
2
}.é(3.22)3[τ,t]þ$^Gronwall ÚnŒ(3.4).
(iii)ò•§(2.1)'ut¦,Œv= ∂
t
u÷v•§
ε(t)∂
2
t
v+ε
0
(t)∂
t
v+Av+γA
θ
2
∂
t
v+f
0
(u)v= 0.(3.23)
^A
−
θ
2
∂
t
v+δv†(3.23) Š^Œ
d
dt
H
2
(v,∂
t
v)+δkvk
2
V
2
+
1
2
ε
0
(t)k∂
t
vk
2
V
−θ
+[γ−δε(t)]k∂
t
vk
2
+hf
0
(u)v,A
−
θ
2
∂
t
v+δvi
= 0,(3.24)
Ù¥
H
2
(v,∂
t
v) =
1
2
[ε(t)k∂
t
vk
2
V
−θ
+kvk
2
V
2−θ
]+δε(t)h∂
t
v,vi+
1
2
δγkvk
2
V
θ
.
ϕV
2−θ
→V
θ
,¤±
|ε(t)h∂
t
v,vi|6ε(t)kA
−
θ
4
∂
t
vkkA
θ
4
vk
6
ε(t)
2
k∂
t
vk
2
V
−θ
+
L
2
kvk
2
V
2−θ
,
δ¿©ž,
H
2
(v,∂
t
v) ∼ε(t)k∂
t
vk
2
V
−θ
+kvk
2
V
2−θ
.(3.25)
†(3.16)Oaq,k
|hf
0
(u)v,A
−
θ
2
∂
t
v+δvi|
6C
Z
Ω
(1+|u|
p−1
)|v|(|A
−
θ
2
∂
t
v|+δ|v|)dx
6C(1+kuk
p−1
N(p−1)
θ+2−δ
)kvk
2N
N−2(2−δ)
(kA
−
θ
2
∂
t
vk
2N
N−2θ
+δkvk
2N
N−2θ
)
6C(1+kuk
p−1
V
2
)kvk
V
2−δ
(kA
−
θ
2
∂
t
vk
V
θ
+δkvk
V
θ
)
6C
0
kvk
V
2
(k∂
t
vk+δkvk
V
2
)
6δk∂
t
vk
2
+
δ
8
kvk
2
V
2
+C
0
.(3.26)
DOI:10.12677/aam.2023.1252382349A^êÆ?Ð
Ha§à
ò(3.26)“\(3.25)
d
dt
H
2
(v,∂
t
v)+
9
8
δkvk
2
V
2
+[γ−δε(t)+δ]k∂
t
vk
2
6C
0
kvk
2
V
2−θ
−
1
2
ε
0
(t)k∂
t
vk
2
V
−θ
+C
0
.
dε(t)4~5Œ,é¿©δÚν= min{
9
8
δ,γ−δL+δ},k
d
dt
H
2
(v,∂
t
v)+ν(kvk
2
V
2
+k∂
t
vk
2
) 6C
0
H
2
(v,∂
t
v)+C
0
.(3.27)
^t
2
θ
¦±(3.27)Œ
d
dt
(t
2
θ
H
2
(v,∂
t
v))+νt
2
θ
(kvk
2
V
2
+k∂
t
vk
2
)
6C
0
t
2
θ
H
2
(v,∂
t
v)+C
0
t
2
θ
+Ct
2−θ
θ
(ε(t)k∂
t
vk
2
V
−θ
+kvk
2
V
2−θ
), τ∈R.(3.28)
dV
2
→→L
2
→V
−2
Ú(3.1)Œ
kf(u)k
V
−2
6Ckf(u)k6C(kuk+kuk
p
V
2
) 6C
0
.(3.29)
ε(t)k∂
t
vk
V
−2
= ε(t)k∂
2
t
vk
V
−2
6kAuk
V
−2
+γkA
θ
2
∂
t
uk
V
−2
+kf(u)k
V
−2
+kgk
V
−2
6kuk
V
2
+γk∂
t
uk
V
2θ−2
+kf(u)k
V
−2
+kgk
6C
0
.(3.30)
(Ü(3.30)ÚнnŒ
t
2−θ
θ
ε(t)k∂
t
vk
2
V
−θ
6t
2−θ
θ
k∂
t
vkε(t)k∂
t
vk
θ
V
−2
6
ν
2
t
2
θ
k∂
t
vk
2
+C
0
,
t
2−θ
θ
kvk
2
V
2−θ
6t
2−θ
θ
kvk
2−θ
V
2
kvk6
ν
2
t
2
θ
kvk
2
V
2
+C
0
,
Ù¥^
2
θ
−1 <
2
θ
.ò±þ(J“\(3.28),¿|^V
2
→→L
2

d
dt
(t
2
θ
H
2
(v,∂
t
v))+
ν
2
t
2
θ
(kvk
2
V
2
+k∂
t
vk
2
) 6C
0
t
2
θ
H
2
(v,∂
t
v)+C
0
t
2
θ
.(3.31)
^e
−C
0
(t−τ)
¦±(3.31),¿3[τ,t]þÈ©Œ
ε(t)k∂
t
vk
2
V
−θ
+kvk
2
V
2−θ
6
1
t
2
θ
e
C
0
(t−τ)
.(3.32)
DOI:10.12677/aam.2023.1252382350A^êÆ?Ð
Ha§à
é?¿τ<a6t,‰(3.31) ¦±e
−C
0
(t−a)
,¿3[a,t]þÈ©Œ
Z
t
a
(kvk
2
V
2
+k∂
t
vk
2
)ds6
2
ν
e
C
0
(a−τ)
e
C
0
(t−a)
a
2
θ
.
^e
−C
0
(t−τ)
¦±(3.31)¿3[t,t+1] þÈ©k
H
2
(v(t+1),∂
t
v(t+1))e
−C
0
(t+1−τ)
+
ν
2
Z
t+1
t
e
−C
0
(s−τ)
(kvk
2
V
2
+k∂
t
vk
2
)ds
6H
2
(v(t),∂
t
v(t))e
−C
0
(t−τ)
.(3.33)
Ïdk
Z
t+1
t
(kvk
2
V
2
+k∂
t
vk
2
)ds6
2
ν
e
C
0
(t−τ)
t
2
θ
.(3.34)
(Ü(3.32)Ú(3.34)k
ε(t)k∂
t
vk
2
V
−θ
+kvk
2
V
2−θ
+
Z
t+1
t
(kvk
2
V
2
+k∂
t
vk
2
)ds
6(1+
2
ν
)
1
t
2
θ
e
C
0
(t−τ)
.(3.35)
^Au†(2.1)‰SÈ,Œ
γ
2
d
dt
kuk
2
V
2+θ
+kuk
2
V
4
= hg−f(u)−ε(t)∂
2
t
u,Aui.(3.36)
ϕp+1 <
2N+(2θ−4)
N−4
,¤±kV
2
→L
p+1
,2|^Young Øª,H¨olderØªÚнnŒ
|hf(u),Aui|6kf(u)kkAuk
6C(1+kuk
p−1
p+1
)kuk
p+1
kuk
V
4
6C
0
kuk
V
2
kuk
V
4
6C
0
+
1
4
kuk
2
V
4
(3.37)
|hg−ε(t)∂
2
t
u,Aui|6(kgk+ε(t)k∂
2
t
uk)kuk
V
4
6C(kgk
2
+L
2
k∂
2
t
uk
2
)+
1
4
kuk
2
V
4
(3.38)
ò(3.37)-(3.38)“\(3.36)Œ
γ
d
dt
kuk
2
V
2+θ
+kuk
2
V
4
62C
0
(kgk
2
+L
2
k∂
2
t
uk
2
).(3.39)
DOI:10.12677/aam.2023.1252382351A^êÆ?Ð
Ha§à
a>0,0 <k<1;½a<0,k>1 ž,é?¿τ<ka<a6t,é(3.39)¦±(t−ka)
1
2−θ
Œ
γ
d
dt
[(t−ka)
1
2−θ
kuk
2
V
2+θ
]+
1
2
(t−ka)
1
2−θ
kuk
2
V
4
6C
0
(t−ka)
1
2−θ
(kgk
2
+L
2
k∂
2
t
uk
2
)+
1
2−θ
(t−ka)
θ−1
2−θ
kuk
2
V
2+θ
.(3.40)
dнnÚYoung Øªk
1
2−θ
(t−ka)
θ−1
2−θ
kuk
2
V
2+θ
6C
1
2−θ
(t−ka)
θ−1
2−θ
kuk
2−θ
V
2
kuk
θ
V
4
6
1
8
(t−ka)
1
2−θ
kuk
2
V
4
+Ckuk
2
V
2
.(3.41)
¤±k
γ
d
dt
[(t−ka)
1
2−θ
kuk
2
V
2+θ
] 62C
0
(t−ka)
1
2−θ
(kgk
2
+kuk
2
V
2
+L
2
k∂
2
t
uk
2
).(3.42)
é(3.42)3[ka,t]È©,2|^c¡®(Jk
γkuk
2
V
2+θ
6
Z
t
ka
(ku(s)k
2
V
2
+L
2
k∂
2
t
u(s)k
2
)ds
62C
0
(t−ka)
1−θ
2−θ
+
2
ν
h(t),(3.43)
Ù¥
h(t) =
e
C
0
(ka−τ)
e
C
0
(t−ka)
(ka)
2
θ
(t−ka)
1
2−θ
.
é(3.39)3[a,t]þÈ©Œ
Z
t
a
kuk
2
V
4
ds6
8γ
7
ku(a)k
2
V
2+θ
+
8
7
Z
t
a
(ku(s)k
2
V
2
+L
2
k∂
2
t
u(s)k
2
)ds
6
16C
0
7
(a−ka)
1−θ
2−θ
+
8C
4
7
(t−a)+
16
7ν
h(a)+
16
7ν
e
C
0
(a−τ)
e
C
0
(t−a)
a
2
θ
,(3.44)
Ù¥C
4
= C(R,δ,kgk,L).
é(3.39)3[t,t+1] È©Œ
Z
t+1
t
ku(s)k
2
V
4
ds6
16C
0
7
(t−ka)
1−θ
2−θ
+
8C
4
7
+
16
7ν
h(t)+
16
7ν
e
C
0
(t−τ)
t
2
θ
(3.45)
(Ü(3.43)-(3.45)Œ
kuk
2
V
2+θ
+
Z
t+1
t
ku(s)k
2
V
4
ds
6(
2
γ
+
16
7
)C
0
(t−ka)
1−θ
2−θ
+(
2
νγ
+
16
7ν
)h(t)+
16
7ν
e
C
0
(t−τ)
t
2
θ
+
8
7
C
4
.(3.46)
(Ü(3.35)Ú(3.46)k(3.5)¤á.
DOI:10.12677/aam.2023.1252382352A^êÆ?Ð
Ha§à
-z
n
=(u
n
,∂
t
u
n
) ´¯K(2.1)éACq•§), ´•(3.1) éGalerkin CqSz
n
•´
¤á.Ïd,•3(u,∂
t
u) ∈L
∞
([τ,T];H
t
),∂
t
u∈L
2
([τ,T];V
θ
),
¦
(u
n
,∂
t
u
n
)f∗Âñu(u,∂
t
u)3L
∞
([τ,T];H
t
)¥,
∂
t
u
n
fÂñu∂
t
u3L
2
([τ,T];V
θ
)¥.
A^Ún2.1Œ
u
n
→u3L
2
([τ,T];V
2
),∂
t
u
n
→∂
t
u3L
2
([τ,T];L
2
(Ω)),
(u
n
,∂
t
u
n
) →(u,∂
t
u)3C([τ,T];V
2−δ
×V
−δ
),(3.47)
f(u
n
(t)) →f(u(t))3L
2
¥fÂñ,t∈[τ,T],
u
n
(x,t)3Ω×[τ,T] ¥A??Âñuu(x,t).
dV
2
→L
p+1
Ú(2.5)Œ,é?¿ζ∈C
∞
0
(Ω)
Z
T
τ
hf(u
n
)−f(u),ζidt
6C
Z
T
τ
Z
Ω
(1+|u
n
|
p−1
+|u|
p−1
)|u
n
−u||ζ|dxdt
6C
Z
T
τ
(1+ku
n
k
p−1
p+1
+kuk
p−1
p+1
)ku
n
−uk
p+1
|ζ|
p+1
dt
6C
Z
T
τ
(1+ku
n
k
p−1
V
2
+kuk
p−1
V
2
)ku
n
−uk
V
2
kζk
V
2
dt
6C
0
ku
n
−uk
L
2
([τ,T];V
2
)
→0.
¤±z= (u,∂
t
u)´÷v(3.1)¯K(2.1)f).
é?¿t∈[τ,T], d(3.2) Ú(3.47) Œ
lim
s→t
E(u(s),∂
t
u(s)) = E(u(t),∂
t
u(t)),
x∈Ω ž,u(x,s) →u(x,t)(s→t)A??,
(u,∂
t
u) ∈C([τ,T];V
2−δ
×V
−δ
)∩L
∞
([τ,T];H
t
).
dFatouÚnÚ51Œ
lim
s→t
hg,u(s)i= hg,u(t)i,
k(u(t)),∂
t
u(t)k
2
H
t
6liminf
s→t
k(u(s)),∂
t
u(s)k
2
H
t
,
DOI:10.12677/aam.2023.1252382353A^êÆ?Ð
Ha§à
Z
Ω
(F(u(t))+
η
2
|u(t)|
2
+C)dx
6liminf
s→t
Z
Ω
(F(u(s))+
η
2
|u(s)|
2
+C)dx
6liminf
s→t
Z
Ω
F(u(s))dx+
η
2
ku(t)k
2
+C|Ω|.
¤±k
Z
Ω
F(u(t))dx6liminf
s→t
Z
Ω
F(u(s))dx.(3.48)
d±þOªŒ
liminf
s→t
(
1
2
ε(s)k∂
t
u(s)k
2
+
1
2
ku(s)k
2
V
2
)+liminf
s→t
Z
Ω
F(u(s))dx
6lim
s→t
(
1
2
ε(s)k∂
t
u(s)k
2
+
1
2
ku(s)k
2
V
2
+
Z
Ω
F(u(s))dx)
=
1
2
ε(t)k∂
t
u(t)k
2
+
1
2
ku(t)k
2
V
2
+
Z
Ω
F(u(t))dx
6liminf
s→t
(
1
2
ε(s)k∂
t
u(s)k
2
+
1
2
ku(s)k
2
V
2
)+liminf
s→t
Z
Ω
F(u(s))dx.
k
ε(t)k∂
t
u(t)k
2
= liminf
s→t
ε(s)k∂
t
u(s)k
2
,(3.49)
ku(t)k
2
V
2
= liminf
s→t
ku(s)k
2
V
2
.(3.50)
(Ü(3.49),(3.50),˜mH
t
˜—à5Ú(u,∂
t
u) ∈C
w
([τ,T];H
t
),Œ(u,∂
t
u) ∈C([τ,T];
H
t
).
4.žm•6áÂ8
½n4.1^‡(C
1
)-(C
3
)¤á,é?¿τ<T,¯K(2.1))ëY•6Њ.=XJ
z
1
= (u
1
,∂
t
u
1
),z
2
= (u
2
,∂
t
u
2
) ´¯K(2.1) 'uЊkz
1
(τ)k
H
τ
6R,kz
2
(τ)k
H
τ
6R), ùp
R>0 ´˜‡~ê,K
kz
1
(t)−z
2
(t)k
2
H
t
6e
C
0
(t−τ)
kz
1
(τ)−kz
2
(τ)k
2
H
τ
,∀t∈[τ,T].(4.1)
y²¯z(t) = {¯u(t),∂
t
¯u(t)}= z
1
(t)−z
2
(t),K¯z(t) ÷v•§
ε(t)∂
2
t
¯u(t)+A¯u+γA
θ
2
∂
t
¯u(t)+f(u
1
)−f(u
2
) = 0.(4.2)
^2∂
t
¯u(t) †(4.2) ‰SÈ,Œ
DOI:10.12677/aam.2023.1252382354A^êÆ?Ð
Ha§à
d
dt
H
3
(¯u,∂
t
¯u(t))+2γk∂
t
¯u(t)k
2
V
θ
= −2hf(u
1
)−f(u
2
),∂
t
¯u(t)i+ε
0
(t)k∂
t
¯u(t)k
2
,(4.3)
Ù¥
H
3
(¯u,∂
t
¯u(t)) = ε(t)k∂
t
¯u(t)k
2
+k¯uk
2
V
2
.
dε(t)4~5Œ
d
dt
H
3
(¯u,∂
t
¯u(t))+2γk∂
t
¯u(t)k
2
V
θ
6−2hf(u
1
)−f(u
2
),∂
t
¯u(t)i.(4.4)
|−2hf(u
1
)−f(u
2
),∂
t
¯u(t)i|6C
Z
Ω
(1+|u
1
|
p−1
+|u
2
|
p−1
)|¯u||∂
t
¯u(t)|dx
6C(1+ku
1
k
p−1
N(p−1)
θ+2−δ
+ku
2
k
p−1
N(p−1)
θ+2−δ
)k¯uk
2N
N−2(2−δ)
k∂
t
¯u(t)k
2N
N−2θ
6C(1+ku
1
k
p−1
V
2
+ku
2
k
p−1
V
2
)k¯uk
V
2−δ
k∂
t
¯u(t)k
V
θ
6C
0
k¯uk
V
2−δ
k∂
t
¯u(t)k
V
θ
6C
0
k¯uk
2
V
2
+γk∂
t
¯u(t)k
2
V
θ
.(4.5)
ò(4.5)“\(4.4)Œ
d
dt
H
3
(¯u,∂
t
¯u(t))+γk∂
t
¯u(t)k
2
V
θ
6C
0
(k¯uk
2
V
2
+ε(t)k∂
t
¯u(t)k
2
)
?k
d
dt
H
3
(¯u,∂
t
¯u(t)) 6C
0
H
3
(¯u,∂
t
¯u(t)).(4.6)
‰(4.6)¦±e
−C
0
(t−τ)
,¿3[τ,t]þÈ©Œ
kz
1
(t)−z
2
(t)k
2
H
t
6e
C
0
(t−τ)
kz
1
(τ)−kz
2
(τ)k
2
H
τ
.
d½n3.1,4.1Œ•,1 6p<p
θ
ž,·‚Œ±½Â¯K(2.1)L§U(t,τ) : H
τ
→H
t
,
U(t,τ)(u
0
,u
1
) = (u(t),∂
t
u(t)), t>τ,
Ù¥u(t)´¯K(2.1)ƒéuЊ(u
0
,u
1
) ∈H
τ
•˜),¿…TL§dH
τ
N\H
t
´ëY.
½n4.2XJ^‡(C
1
)-(C
3
)¤á, PB
t
(R) = {z∈H
t
: kzk
H
t
6R},@o•3R
0
>0,¦
B= {B
t
(R
0
)}
t∈R
´L§{U(t,τ)}žm•6áÂ8, …éS
0
>R
0
,÷v
sup
z
τ
∈B
τ
(R
0
)
{kU(t,τ)z
τ
k
H
t
+
Z
+∞
τ
k∂
t
u(y)kdy}6S
0
.(4.7)
y²d½n4.1 9©[7],[13], ´y(4.7) ¤á.
DOI:10.12677/aam.2023.1252382355A^êÆ?Ð
Ha§à
5.žm•6áÚf
5.1.kO
•¯K(2.1)L§U(t,τ)ìC;5, ·‚k?1±eO.
(u
i
(t),∂
t
u
i
(t)),i= 1,2´•§(2.1)'uЊ(u
i
(τ),∂
t
u
i
(τ)) ∈B
τ
(R
0
)),P
w(t) = u
1
(t)−u
2
(t).Kw(t)÷v











ε(t)∂
2
t
w+Aw+γA
θ
2
∂
t
w+f(u
1
)−f(u
2
) = 0,x∈Ω,t>τ,
w(x,t) = 0,x∈∂Ω,t>τ,
w(x,τ) = u
1
(τ)−u
2
(τ),∂
t
w(x,τ) = ∂
t
u
1
(τ)−∂
t
u
2
(τ),x∈Ω.
(5.1)
‰(5.1)†mü>¦±w,¿3[τ,T]×Ω þÈ©Œ
Z
Ω
ε(T)∂
t
w(T)w(T)dx−
Z
Ω
ε(τ)∂
t
w(τ)w(τ)dx−
Z
T
τ
Z
Ω
ε
0
(s)∂
t
w(s)w(s)dxds
−
Z
T
τ
Z
Ω
ε(s)|∂
t
w(s)|
2
dxds+
Z
T
τ
Z
Ω
|A
1
2
w(s)|
2
dxds+
γ
2
Z
Ω
|A
θ
4
w(T)|
2
dx
+
Z
T
τ
Z
Ω
(f(u
1
)−f(u
2
))w(s)dxds−
γ
2
Z
Ω
|A
θ
4
w(τ)|
2
dx= 0.(5.2)
^w
t
¦±(5.1),¿3[s,T]×ΩþÈ©,k
1
2
Z
Ω
ε(T)|∂
t
w(T)|
2
dx−
1
2
Z
Ω
ε(s)|∂
t
w(s)|
2
dx+
1
2
Z
Ω
|A
1
2
w(T)|dx−
1
2
Z
Ω
|A
1
2
w(s)|dx
+γ
Z
T
s
Z
Ω
|A
θ
4
∂
t
w(t)|
2
dxdt−
1
2
Z
T
s
Z
Ω
ε
0
(t)|∂
t
w(t)|
2
dxdt
+
Z
T
s
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(t)dxdt= 0.(5.3)
-G
w
(t) =
1
2
R
Ω
(ε(t)|∂
t
w(t)|
2
+|A
1
2
w(t)|)dx,Kd(5.3) Œ
G
w
(T)−G
w
(s)+
Z
T
s
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(t)dxds−
1
2
Z
T
s
Z
Ω
ε
0
(t)|∂
t
w(t)|
2
dxdt
+γ
Z
T
s
Z
Ω
|A
θ
4
∂
t
w(t)|
2
dxdt= 0.(5.4)
dε(t)•4~¼êŒε
0
(t) 60,?k
1
2
Z
T
s
Z
Ω
ε
0
(t)|∂
t
w(t)|
2
dxdt
6G
w
(s)−
Z
T
s
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(t)dxdt−γ
Z
T
s
Z
Ω
|A
θ
4
∂
t
w(t)|
2
dxdt.
DOI:10.12677/aam.2023.1252382356A^êÆ?Ð
Ha§à
ε(t)|∂
t
w(t)|
2
6
1
2
Lε
0
(t)|∂
t
w(t)|
2
,¤±k
Z
T
s
Z
Ω
ε(t)|∂
t
w(t)|
2
dxdt
6LG
w
(s)−L
Z
T
s
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(t)dxdt−Lγ
Z
T
s
Z
Ω
|A
θ
4
∂
t
w(t)|
2
dxdt.(5.5)
é(5.4)'us3[τ,T]×Ω þÈ©,Œ
G
w
(T)(T−τ)−
1
2
Z
T
τ
Z
T
s
Z
Ω
ε
0
(t)|∂
t
w(t)|
2
dxdtds
=
Z
T
τ
G
w
(s)ds−
Z
T
τ
Z
T
s
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(t)dxdtds
−γ
Z
T
τ
Z
T
s
Z
Ω
|A
θ
4
∂
t
w(t)|
2
dxdtds.(5.6)
(Ü(5.5)Ú(5.2)k
Z
T
τ
G
w
(s)ds=
1
2
Z
T
τ
Z
Ω
ε(s)|∂
t
w(s)|
2
dxds+
1
2
Z
T
τ
Z
Ω
|A
1
2
w(s)|
2
dxds
=
Z
T
τ
Z
Ω
ε(s)|∂
t
w(s)|
2
dxds+
1
2
Z
Ω
ε(τ)∂
t
w(τ)w(τ)dx+
γ
4
Z
Ω
|A
θ
4
w(τ)|
2
dx
−
1
2
Z
Ω
ε(T)∂
t
w(T)w(T)dx+
1
2
Z
T
τ
Z
Ω
ε
0
(s)∂
t
w(s)w(s)dxds
−
1
2
Z
T
τ
Z
Ω
(f(u
1
)−f(u
2
))w(s)dxds−
γ
4
Z
Ω
|A
θ
4
w(T)|
2
dx
6LG
w
(τ)−L
Z
T
τ
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(s)dxds
−Lγ
Z
T
τ
Z
Ω
|A
θ
4
∂
t
w(s)|
2
dxds+
1
2
Z
Ω
ε(τ)∂
t
w(τ)w(τ)dx−
γ
4
Z
Ω
|A
θ
4
w(T)|
2
dx
+
γ
4
Z
Ω
|A
θ
4
w(τ)|
2
dx−
1
2
Z
T
τ
Z
Ω
(f(u
1
)−f(u
2
))w(s)dxds
+
1
2
Z
T
τ
Z
Ω
L∂
t
w(s)w(s)dxds−
1
2
Z
Ω
ε(T)∂
t
w(T)w(T)dx.(5.7)
ò(5.7)“\(5.6),2dε(t)4~5Œ
DOI:10.12677/aam.2023.1252382357A^êÆ?Ð
Ha§à
G
w
(T) 6
L
T−τ
G
w
(τ)+
1
2(T−τ)
Z
Ω
ε(τ)∂
t
w(τ)w(τ)dx+
γ
4(T−τ)
Z
Ω
|A
θ
4
w(τ)|
2
dx
−
L
(T−τ)
Z
T
τ
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(s)dxds−
γL
(T−τ)
Z
T
τ
Z
Ω
|A
θ
4
∂
t
w(s)|
2
dxds
−
1
(T−τ)
Z
T
τ
Z
T
s
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(t)dxdtds−
γ
4(T−τ)
Z
Ω
|A
θ
4
w(T)|
2
dx
+
γ
2(T−τ)
Z
T
τ
Z
Ω
L∂
t
w(s)w(s)dxds−
γ
(T−τ)
Z
T
τ
Z
T
s
Z
Ω
|A
θ
4
∂
t
w(t)|
2
dxdtds
−
1
2(T−τ)
Z
Ω
ε(T)∂
t
w(T)w(T)dx−
1
2(T−τ)
Z
T
τ
Z
Ω
(f(u
1
)−f(u
2
))w(s)dxds
-
C
M
= LG
w
(τ)+
1
2
Z
Ω
ε(τ)∂
t
w(τ)w(τ)dx+
γ
4
Z
Ω
|A
θ
4
w(τ)|
2
dx.(5.8)
Φ
T
τ
((u
1
(τ),∂
t
u
1
(τ)),(u
2
(τ),∂
t
u
2
(τ))) =
3
X
i=1
I
i
.(5.9)
Ù¥
I
1
= −
1
2(T−τ)
Z
Ω
ε(T)∂
t
w(T)w(T)dx+
1
2(T−τ)
Z
T
τ
Z
Ω
L∂
t
w(s)w(s)dxds,
I
2
=
1
(T−τ)
[−L
Z
T
τ
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(s)dxds−
1
2
Z
T
τ
Z
Ω
(f(u
1
)−f(u
2
))w(s)dxds
−
Z
T
τ
Z
T
s
Z
Ω
(f(u
1
)−f(u
2
))∂
t
w(t)dxdtds],
I
3
=−
γ
(T−τ)
Z
T
τ
Z
T
s
Z
Ω
|A
θ
4
∂
t
w(t)|
2
dxdtds−
γ
4(T−τ)
Z
Ω
|A
θ
4
w(T)|
2
dx
−
γL
(T−τ)
Z
T
τ
Z
Ω
|A
θ
4
∂
t
w(s)|
2
dxds.
d(5.8),(5.9) Œ
G
w
(T) 6
1
(T−τ)
C
M
+Φ
T
τ
((u
1
(τ),∂
t
u
1
(τ)),(u
2
(τ),∂
t
u
2
(τ)))
5.2.ìC;5
e¡·‚ò|^ ¼ê•{5y²•§(2.1)éAL§´ìC;.
DOI:10.12677/aam.2023.1252382358A^êÆ?Ð
Ha§à
½n5.1XJ^‡(C
1
)-(C
3
)¤á, é?¿½t∈R, k.S{x
n
}
∞
n=1
∈H
τ
n
,†?¿S
{τ
n
}
∞
n=1
∈[−∞,t)(n→∞,τ
n
→−∞)ž, KS{U(t,τ
n
)x
n
}
∞
n=1
kÂñf.
y²(u
n
(t),∂
t
u
n
(t)) ´¯K(2.1) 'u Њ(u
i
(τ),∂
t
u
i
(τ)) ), d½n3.1Œ•ku
n
k
2
V
2
+
ε(ξ)k∂
t
u
n
k
2
´k.,…ku
n
k
2
V
2
´k.;d^‡(C
1
)Œ•,éξ∈[τ,T],ε(ξ)
´k.,¤±k∂
t
u
n
k
2
´k..ŠâBanach−Alaoglu ½n,½n3.1, Ún2.1 k±e(J:
u
n
→u3L
∞
([τ,T];V
2
)¥f∗Âñ,(5.10)
∂
t
u
n
→u
t
3L
2
([τ,T];V
θ
)¥fÂñ,(5.11)
∂
t
u
n
→u
t
3L
∞
([τ,T];L
2
)¥f∗Âñ,(5.12)
u
n
→u3L
2
([τ,T];V
2
),(5.13)
∂
t
u
n
→∂
t
u3L
2
([τ,T];L
2
),(5.14)
u
n
→u3L
2
([τ,T];V
2θ
),(5.15)
Ù¥^θ<2θ<2.
é?¿>0 Ú½T>τ,¦T−τvŒ, Kk
1
T−τ
C
M
<.
d½n2.1Œ•, ·‚•Iy²é?¿½T,Φ
T
τ
∈C(B
τ
(R
0
)) ¤á=Œ.•d, ·‚Å‘?n
(5.9).
Äk,d½n4.2Ú(5.10)-(5.13)Œ
lim
n→∞
lim
m→∞
Z
Ω
|A
θ
4
(u
n
−u
m
)|
2
dx= 0.(5.16)
lim
n→∞
lim
m→∞
Z
T
τ
Z
Ω
|A
θ
4
(∂
t
u
n
−∂
t
u
m
)|
2
dxds= 0.(5.17)
ϕV
2
→L
p+1
,2(Ü(5.10)Ú(5.13)Œ
lim
n→∞
lim
m→∞
Z
Ω
ε(t)(∂
t
u
n
−∂
t
u
m
)(u
n
−u
m
)dx
6Clim
n→∞
lim
m→∞
Lk∂
t
u
n
−∂
t
u
m
k
V
2
ku
n
−u
m
k
V
2
6Clim
n→∞
lim
m→∞
Lk∂
t
u
n
+∂
t
u
m
k
V
2
ku
n
−u
m
k
V
2
= 0.(5.18)
lim
n→∞
lim
m→∞
Z
T
τ
Z
Ω
L(∂
t
u
n
−∂
t
u
m
)(u
n
−u
m
)dxds
6Clim
n→∞
lim
m→∞
(
Z
T
τ
k∂
t
u
n
−∂
t
u
m
k
2
ds)
1
2
(
Z
T
τ
ku
n
−u
m
k
2
ds)
1
2
= 0.(5.19)
DOI:10.12677/aam.2023.1252382359A^êÆ?Ð
Ha§à
lim
n→∞
lim
m→∞
Z
T
τ
Z
Ω
(f(u
n
)−f(u
m
))(u
n
−u
m
)dxds
6Clim
n→∞
lim
m→∞
Z
T
τ
Z
Ω
(1+|u
n
|
p−1
+|u
m
|
p−1
)|u
n
−u
m
|
2
dxds
6Clim
n→∞
lim
m→∞
Z
T
τ
(1+ku
n
k
p−1
p+1
+ku
m
k
p−1
p+1
)ku
n
−u
m
k
2
p+1
ds
6Clim
n→∞
lim
m→∞
Z
T
τ
(1+ku
n
k
p−1
V
2
+ku
m
k
p−1
V
2
)ku
n
−u
m
k
2
V
2
ds
6C
0
lim
n→∞
lim
m→∞
Z
T
τ
ku
n
−u
m
k
2
V
2
ds= 0.(5.20)
(Ü(5.16)-(5.17),±9(5.18)-(5.19),k
lim
n→∞
lim
m→∞
I
1
= 0,(5.21)
lim
n→∞
lim
m→∞
I
3
= 0.(5.22)
Ùg,Ï•
Z
T
τ
Z
Ω
(f(u
n
)−f(u
m
))(∂
t
u
n
−∂
t
u
m
)dxds
=
Z
T
τ
Z
Ω
f(u
n
)∂
t
u
n
dxds−
Z
T
τ
Z
Ω
f(u
n
)∂
t
u
m
dxds−
Z
T
τ
Z
Ω
f(u
m
)∂
t
u
n
dxds
+
Z
T
τ
Z
Ω
f(u
m
)∂
t
u
m
dxds
=
Z
Ω
F(u
n
(T))dx−
Z
Ω
F(u
n
(τ))dx−
Z
T
τ
Z
Ω
f(u
n
)∂
t
u
m
dxds−
Z
T
τ
Z
Ω
f(u
m
)∂
t
u
n
dxds
+
Z
Ω
F(u
m
(T))dx−
Z
Ω
F(u
m
(τ))dx.(5.23)
d(2.5)ÚV
2
→L
p+1
,Œ
|
Z
Ω
(F(u
n
(t))−F(u(t)))dx|6
Z
Ω
|(F(u
n
(t))−F(u(t)))|dx
6
Z
Ω
|f(u(t)+λ(u
n
(t)−u(t)))||u
n
(t)−u(t)|dx
6C
Z
Ω
(1+|u
n
(t)|
p−1
+|u(t)|
p−1
)|u
n
(t)−u(t)|
2
dx
6C(1+ku
n
(t)k
p−1
p+1
+ku(t)k
p−1
p+1
)ku
n
(t)−u(t)k
2
p+1
6C(1+ku
n
(t)k
p−1
V
2
+ku(t)k
p−1
V
2
)ku
n
(t)−u(t)k
2
V
2
6C
0
.(5.24)
DOI:10.12677/aam.2023.1252382360A^êÆ?Ð
Ha§à
d(5.14)Œ,n→∞,m→∞žk
lim
n→∞
lim
m→∞
Z
T
τ
hf(u
n
),∂
t
u
m
ids
=lim
n→∞
Z
T
τ
hf(u
n
),∂
t
uids
=
Z
T
τ
hf(u),∂
t
uids
=
Z
Ω
F(u(T))dx−
Z
Ω
F(u(τ))dx.(5.25)
aq/,k
lim
n→∞
lim
m→∞
Z
T
τ
hf(u
m
),∂
t
u
n
ids=
Z
Ω
F(u(T))dx−
Z
Ω
F(u(τ))dx.(5.26)
(Ü(5.23)-(5.26)Œ
lim
n→∞
lim
m→∞
Z
T
τ
Z
Ω
(f(u
n
)−f(u
m
))(∂
t
u
n
−∂
t
u
m
)dxds= 0(5.27)
é?¿½T, |
R
T
s
R
Ω
(f(u
n
)−f(u
m
))(∂
t
u
n
−∂
t
u
m
)dxdt|´k., ?dLebesgue ››Âñ
½nŒ
lim
n→∞
lim
m→∞
Z
T
τ
Z
T
s
Z
Ω
(f(u
n
)−f(u
m
))(∂
t
u
n
−∂
t
u
m
)dxdtds
=
Z
T
τ
( lim
n→∞
lim
m→∞
Z
T
s
Z
Ω
(f(u
n
)−f(u
m
))(∂
t
u
n
−∂
t
u
m
)dxdt)ds
=
Z
T
τ
0ds= 0.(5.28)
(Ü(5.27)Ú(5.28)Œ
lim
n→∞
lim
m→∞
I
2
= 0.(5.29)
nþŒΦ
T
τ
∈C(B
τ
(R
0
)).
½n5.2XJ^‡(C
1
)-(C
3
) ¤á, @o¯K(2.1)éAL§U(t,τ):H
τ
→H
t
k˜‡ØC
žm•6áÚfA= {A
t
}
t∈R
.
y²d½n2.1, ½n3.1, ½n4.1, ½n5.1 ´y.
6.(؆Ð"
©313 Ü©y¯K(2.1))•35, 14 Ü©Ñ)•˜5ÚL§{U(t,τ)}
žm•6áÂ8, 2(Ü15 Ü©y{U(t,τ)}ìC;5ÒÑžm•6áÚf•35.
©Ù¥Ì‡^UþOÚ ¼ê•{, ‘3L§ÑÑ5Ú;5. duε(·) ´•6 u
žmt¼ê, ùéL§;5O¬‘5Ÿþ(J, ^ ¼ê•{éÐ/)ûù˜J
DOI:10.12677/aam.2023.1252382361A^êÆ?Ð
Ha§à
K, 3äNA^¥Â ¼êE´E,…¡”. d©Ù•?Øf(u) 3g. ^‡e.
)•žmÄåÆ1•,38ïÄ¥Œ±•Ä)3.½ö‡.œ¹e5Ÿ.
Ä7‘8
I[g,‰ÆÄ7‘8(1OÒ:12061062;11961059).
ë•©z
[1]Woinowsky-Krieger,S.(1950)TheEffectofanAxialForceontheVibrationofHingedBars.
JournalofAppliedMechanicsTransactionsoftheASME,17,35-36.
https://doi.org/10.1115/1.4010053
[2]Yang,Z.J.(2013)OnanExtensibleBeamEquationwithNonlinearDampingandSource
Terms.JournalofDifferentialEquations,254,3903-3927.
https://doi.org/10.1016/j.jde.2013.02.008
[3]Zhao,C.X., Zhao, C.Y. and Zhong, C.K. (2020) The Global Attractor for a Class of Extensible
Beamswith NonlocalWeak Damping.DiscreteContinuous DynamicalSystems-B,25, 935-955.
https://doi.org/10.3934/dcdsb.2019197
[4]JorgeSilva,M.A.andNarciso,V.(2015)AttractorsandTheirPropertiesforaClassofNon-
localExtensibleBeams.DiscreteandContinuousDynamicalSystems,35,985-1008.
https://doi.org/10.3934/dcds.2015.35.985
[5]Ding,P.Y.andYang,Z.J.(2021)LongtimeBehaviorforanExtensibleBeamEquationwith
RotationalInertiaandStructuralNonlinearDamping.JournalofMathematicalAnalysisand
Applications,496,Article124785.https://doi.org/10.1016/j.jmaa.2020.124785
[6]Luo,X.D.andMa,Q.Z.(2022)TheExistenceofTime-DependentAttractorforWaveE-
quationwithFractionalDampingandLowerRegularForcingTerm.DiscreteandContinuous
DynamicalSystems-B,27,4817-4835.https://doi.org/10.3934/dcdsb.2021253
[7]€m,ñ7².ù•§žm•6ìáÚf•35[J].A^êÆÚåÆ,2020,41(2):
195-203.https://doi.org/10.21656/1000-0887.400088
[8]4ËË,ê|û.Plate•§žm•6ÛáÚf•35[J].uÀ“‰ŒÆÆ(g,‰Æ‡),
2016(2):35-44.
[9]Meng, F.J., Yang, M.H.and Zhong, C.K.(2016) Attractors forWaveEquations withNonlinear
Damping on Time-Dependent Space. DiscreteandContinuousDynamicalSystems-B, 21,205-
225.https://doi.org/10.3934/dcdsb.2016.21.205
[10]Vishik,M.I. andChepyzhov, V.V.(2011)TrajectoryAttractors ofEquationsof Mathematical
Physics.RussianMathematicalSurveys,66,637-731.
https://doi.org/10.1070/RM2011v066n04ABEH004753
DOI:10.12677/aam.2023.1252382362A^êÆ?Ð
Ha§à
[11]Robinson,J.(2001)Infinite-DimensionalDynamicalSystems:AnIntroductiontoDissipative
Parabolic PDEs andtheTheoryof GlobalAttractors. Cambridge University Press, NewYork.
[12]Conti,M., Pata, V.andTemam, R.(2013)AttractorsforProcessesonTime-DependentSpaces.
ApplicationstoWaveEquations.JournalofDifferentialEquations,255,1254-1277.
https://doi.org/10.1016/j.jde.2013.05.013
[13]Li,Y.N.,Yang,Z.J.andDa,F.(2019)RobustAttractorsforaPerturbedNon-Autonomous
ExtensibleBeamEquationwithNonlinearNonlocalDamping.DiscreteandContinuousDy-
namicalSystems,39,5975-6000.https://doi.org/10.3934/dcds.2019261
DOI:10.12677/aam.2023.1252382363A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.