设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2023,12(5),2480-2492
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.125250
˜
a
•
¼
‡
©•
§
ÿ
Ý
–
.
)
9
3
)
Ô
ê
Æ
.
¥
A^
•••
ú
ô
•
…
’
E
â
Æ
Ä
:
Ü
§
ú
ô
É
²
Â
v
F
Ï
µ
2023
c
4
28
F
¶
¹
^
F
Ï
µ
2023
c
5
21
F
¶
u
Ù
F
Ï
µ
2023
c
5
31
F
Á
‡
©
ï
Ä
˜
a
ä
k
Ã
•
ž
¢
α
-
.
•
¼
‡
©•
§
ÿ
Ý
–
.
)
•
3
5
Ú
•
˜
5
"
©
¥
b
‚
5
Ž
f
Ü
©
3
Banach
˜
m
X
þ
)
¤
;
)
Û
Œ
+
§
,
|
^
©
ê
˜
Ž
f
n
Ø
Ú
Ž
f
Œ
+
n
Ø
y
²
•
§
)
•
3
•
˜
5
§
¿
ò
Ù
A^u
˜
a
)
Ô
ê
Æ
.
¥
§
y
(
Ø
(
5
"
'
…
c
•
¼
‡
©•
§
§
Ã
¡
ž
¢
§
ÿ
Ý
Ø
§
©
ê
˜
Ž
f
A Class of Measure Pseudo Type Solution
ofPartialFunctionalDifferential
EquationsandApplicationsin
BiomathematicalModel
FangWang
DepartmentofBasicCourses,ZhejiangChangzhengVocationalTechnicalCollege,
HangzhouZhejiang
Received:Apr.28
th
,2023;accepted:May21
st
,2023;published:May31
st
,2023
©
Ù
Ú
^
:
•
.
˜
a
•
¼
‡
©•
§
ÿ
Ý
–
.
)
9
3
)
Ô
ê
Æ
.
¥
A^
[J].
A^
ê
Æ
?
Ð
,2023,12(5):
2480-2492.DOI:10.12677/aam.2023.125250
•
Abstract
Inthispaper, theexistence, uniquenessofmeasure pseudotype solutionsinthe
α
-form
forpartialfunctionaldifferentialequationswithinfinitedelayareinvestigated.Here
weassumethatthelinearpartgeneratesacompactanalyticsemigrouponaBanach
space
X
,thedelayedpartisassumedtobecontinuouswithrespecttothefractional
power of thegenerator.Finally,anexampleofbiomathematicalmodelispresented to
illustratethemainfindings.
Keywords
PartialFunctionalDifferentialEquations,InfiniteDelay,MeasureTheory,Fractional
PowerofOperators
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
3
©
z
[1]
¥
,
ï
Ä
X
e
ä
k
Ã
¡
ž
¢
•
¼
‡
©•
§
(
{P
•
PFDEs)
V
±
Ï
)
•
3
5
,
d
dt
u
(
t
) =
−
Au
(
t
)+
L
(
u
t
)+
f
(
t
)
,t
≥
σ,
u
σ
=
ϕ
∈B
.
(1.1)
Ù
¥
−
A
÷
v
Hille-Yosida
^
‡
§
¼
ê
u
t
∈B
½
Â
•
u
t
(
θ
)=
u
(
t
+
θ
),
θ
∈
(
−∞
,
0],
B
•
l
(
−∞
,
0]
N
X
¼
ê
¤
Banach
˜
m
,
…
÷
v
©
ò
‡
0
˜
ú
n
5
^
‡
.
L
•
l
B
N
X
k
.
‚
5
Ž
f
,
f
•
V
±
Ï
¼
ê
.
d
,
?
˜
Ú
X
J
−
A
3
X
þ
)
¤
)
Û
Œ
+
(
T
(
t
))
t
≥
0
,
K
Š
â
©
ê
˜
Ž
f
n
Ø
,
©
z
[2]
ï
Ä
‡
©•
§
A
g
Å
5
.
Ï
ä
k
Ã
¡
ž
¢
PFDEs
3
)
Ô
!
z
Æ
Ú
Ô
n
+
•
Ñ
k
2
•
A^
,
8
c
®
²
¤
•
Ä
å
X
Ú
˜
‡
-
‡
ï
Ä
+
•
.
'
u
Ã
¡
ž
¢
PFDEs
©
z
š
~
õ
,
~
X
3
[3]
¥
ï
Ä
±
Ï
5
,
3
[4–6]
¥
ï
Ä
V
±
Ï
5
,[7,8]
?
Ø
A
g
Å
5
,[9,10]
ï
Ä
•
§
ÿ
Ý
–
V
±
Ï
5
Ú
ÿ
Ý
–
A
g
Å
5
,
)
K
5
Ú
-
½
5
K
©
O
3
[11–13]
Ú
[12,14,15]
¥
k
¤
&?
.
3
Ä
å
Æ5
Ÿ
ï
Ä
¥
§
DOI:10.12677/aam.2023.1252502481
A^
ê
Æ
?
Ð
•
±
Ï
5
§
V
±
Ï
5
§
A
g
Å
5
§
–
V
±
Ï
5
§
–
A
g
Å
5
´
É
'
5
ï
Ä
é
–
§
é
k
©
z
é
ù
5
Ÿ
?
1
Ú
˜
/
ï
Ä
"
,
˜
•
¡
§
3
±
©
z
¥
§
Œ
Ü
©
©
z
−
A
)
¤
´
ë
Y
Œ
+
§
é
)
¤
)
Û
Œ
+
ï
Ä
¿Ø
õ
„
"
©
3
c
¡
©
z
Ä
:
þ
§
|
^
©
ê
˜
Ž
f
n
Ø
Ú
Ž
f
Œ
+
•{
§
ï
Ä
.
(1.1)
ÿ
Ý
–
.
)
•
3
5
Ú
•
˜
5
,
Ù
¥
−
A
)
¤
)
Û
Œ
+
.
ƒ
é
uk
•
ž
¢
,
Ã
¡
ž
¢
w
,
´
•E
,
,
Ï
•
)
ä
N
5
Ÿ
†
ƒ
˜
m
B
À
J
—
ƒ
ƒ
'
§
3
©
¥
§
·
‚
ƒ
˜
m
B
÷
v
Hale
Ú
Kato
‰
Ñ
Ä
ú
n
5
^
‡
[16].
2.
ý
•
£
P
(
X,
|·|
)
•
˜
‡E
Banach
˜
m
,
N
,
R
,
R
+
Ú
C
©
OL
«
g
,
ê
8
,
¢ê
8
,
š
K
¢ê
8
Ú
E
ê
8
.
A
´
½
Â
3
X
þ
‚
5
Ž
f
,
D
(
A
)
Ú
σ
(
A
)
L
«
A
½
Â
•
Ú
Ì
.
½
Â
2.1.
¡
f
∈
C
(
R
,X
)
•
‡
±
Ï
¼
ê
(
½
±
Ï
¼
ê
),
e
•
3
ω
∈
R
−{
0
}
¦
é
u
¤
k
t
∈
R
÷
v
f
(
t
+
ω
) =
−
f
(
t
)(
½
f
(
t
+
ω
) =
f
(
t
)).
ò
ù
a
¼
ê
8
Ü
P
•
P
ωap
(
R
,X
)(
½
P
ω
(
R
,X
)).
5
2.1
.
e
f
∈
P
ωap
(
R
,X
),
K
k
f
∈
P
2
ω
(
R
,X
).
½
Â
2.2.
[17]
é
u
‰
½
ω,k
∈
R
,
¡
f
∈
C
(
R
,X
)
•
(
ω,k
)-
±
Ï
¼
ê
(
½
Bloch-
±
Ï
¼
ê
),
e
é
u
¤
k
t
∈
R
÷
v
f
(
t
+
ω
) =
e
ikω
f
(
t
).
ò
ù
a
¼
ê
8
Ü
P
•
P
ω,k
(
R
,X
).
5
2.2
.
¡
k
•
f
Floquet
•
ê
.
e
f
´
(
ω,k
)-
±
Ï
¼
ê
…
ωk
=2
π
,
K
f
´
ω
-
±
Ï
¼
ê
;
e
ωk
=
π
,
K
f
´
ω
-
‡
±
Ï
¼
ê
.
½
Â
2.3.
[18]
é
u
‰
½
ρ
∈
C
(
R
,X
),
¡
f
∈
C
(
R
,X
)
•
\
±
Ï
¼
ê
,
e
é
u
¤
k
t
∈
R
÷
v
f
(
t
+
ω
) =
ρ
(
t
)
f
(
t
).
ò
ù
a
\
±
Ï
¼
ê
8
Ü
P
•
P
ω,ρ
(
t
)
(
R
,X
).
½
Â
2.4.
[19]
¡
f
∈
C(
R
,X
)
•
V
±
Ï
¼
ê
,
e
é
u
?
¿
ε>
0
,
•
3
l
(
ε
)
>
0,
¦
3
z
‡
•
Ý
•
l
(
ε
)
«
m
I
þ
–
•
3
˜
‡
τ
¦
Ù
÷
v
k
f
(
t
+
τ
)
−
f
(
t
)
k
<ε
é
˜
ƒ
t
∈
R
¤
á
.
ù
a
V
±
Ï
¼
ê
8
Ü
P
•
AP
(
R
,X
).
½
Â
2.5.
[20]
¡
f
∈
C(
R
,X
)
•
A
g
Å
¼
ê
,
e
é
u
z
‡
¢ê
(
s
0
n
)
n
∈
N
§
•
3
˜
‡
f
ê
(
s
n
)
n
∈
N
¦
g
(
t
) :=lim
n
→∞
f
(
t
+
s
n
)
é
u
?
¿
t
∈
R
Ñ
k
½
Â
,
…
lim
n
→∞
g
(
t
−
s
n
) =
f
(
t
)
é
?
¿
t
∈
R
¤
á
.
ù
a
¼
ê
8
Ü
P
•
AA
(
R
,X
).
e
¡
,
·
‚
|
^
ÿ
Ý
n
Ø
•{
§
Ï
L
H
{
˜
m
V
g
§
Ú
\
ÿ
Ý
–
.
¼
ê
V
g
,
=
ÿ
Ý
–
‡
±
Ï
¼
ê
,
ÿ
Ý
–
±
Ï
¼
ê
,
ÿ
Ý
–
Bloch-
±
Ï
¼
ê
,
ÿ
Ý
–
\
±
Ï
¼
ê
,
ÿ
Ý
–
V
±
Ï
¼
ê
Ú
ÿ
Ý
–
A
g
Å
¼
ê
.
L
L
«
R
þ
Lebesgue
σ
•
,
M
L
«
3
L
þ
¤
k
÷
v
X
e
^
‡
ÿ
Ý
µ
8
Ü
µ
é
u
¤
k
a,b
∈
R
(
a
≤
b
),
…
µ
(
R
) =
∞
Ú
µ
([
a,b
])
<
∞
.
½
Â
2.6.
µ,ν
∈M
.
e
÷
v
lim
T
→
+
∞
1
µ
([
−
T,T
])
Z
[
−
T,T
]
|
f
(
t
)
|
dν
(
t
) = 0
,
K
¡
¼
ê
f
∈
C
(
R
,X
)
•
(
µ,ν
)-
H
{
.
ù
a
¼
ê
8
Ü
P
•
E
(
R
,X,µ,ν
).
½
Â
2.7.
µ,ν
∈M
.
¡
f
∈
C
(
R
,X
)
•
ÿ
Ý
–
‡
±
Ï
¼
ê
(
½
ÿ
Ý
–
±
Ï
¼
ê
,
ÿ
Ý
–
Bloch-
±
Ï
¼
ê
,
ÿ
Ý
–
\
±
Ï
¼
ê
,
ÿ
Ý
–
V
±
Ï
¼
ê
Ú
ÿ
Ý
–
A
g
Å
¼
ê
),
e
¼
ê
Œ
©
)
•
f
=
g
+
ϕ
,
Ù
¥
g
∈
P
ωap
(
R
,X
)(
½
P
ω
(
R
,X
),
P
ω,k
(
R
,X
),
P
ω,ρ
(
t
)
(
R
,X
),
AP
(
R
,X
),
AA
(
R
,X
))
…
ϕ
∈
DOI:10.12677/aam.2023.1252502482
A^
ê
Æ
?
Ð
•
E
(
R
,X,µ,ν
).
ù
a
¼
ê
8
Ü
P
•
MPP
ωap
(
R
,X,µ,ν
)(
½
MPP
ω
(
R
,X,µ,ν
),
MPP
ω,k
(
R
,X,µ,ν
),
MPP
ω,ρ
(
t
)
(
R
,X,µ,ν
),
MPAP
(
R
,X,µ,ν
),
MPAA
(
R
,X,µ,ν
)).
5
2.3
.
d
þ
¡
½
Â
§
Ø
J
w
Ñ
X
e
•
¹'
X
¤
á
µ
(
i
)
MPP
ωap
(
R
,X,µ,ν
)
⊂
MPP
ω
(
R
,X,µ,ν
)
⊂
MPP
ω,k
(
R
,X,µ,ν
)
⊂
MPP
ω,ρ
(
t
)
(
R
,X,µ,ν
)
.
(
ii
)
MPP
ωap
(
R
,X,µ,ν
)
⊂
MPAP
(
R
,X,µ,ν
)
⊂
MPAA
(
R
,X,µ,ν
)
.
(
iii
)
MPP
ω
(
R
,X,µ,ν
)
⊂
MPAP
(
R
,X,µ,ν
),
MPP
ω
(
R
,X,µ,ν
)
⊂
MPAA
(
R
,X,µ,ν
).
©
O
½
Â
X
e
8
Ü
µ
A
(
R
,X
) =
{
P
ωap
(
R
,X
)
,P
ω
(
R
,X
)
,P
ω,k
(
R
,X
)
,P
ω,ρ
(
t
)
(
R
,X
)
,AP
(
R
,X
)
,AA
(
R
,X
)
}
,
P
(
R
,X,µ,ν
) =
{
MPP
ωap
(
R
,X,µ,ν
)
,MPP
ω
(
R
,X,µ,ν
)
,MPP
ω,k
(
R
,X,µ,ν
)
,MPP
ω,ρ
(
t
)
(
R
,X,µ,ν
)
,
MPAP
(
R
,X,µ,ν
)
,MPAA
(
R
,X,µ,ν
)
}
,
K
f
∈P
(
R
,X,µ,ν
)
…
=
÷
v
f
Œ
±
©
)
•
f
=
g
+
ϕ
,
Ù
¥
g
∈A
(
R
,X
),
ϕ
∈E
(
R
,X,µ,ν
).
·
‚
•
Ú
˜
¡
P
(
R
,X,µ,ν
)
p
¡
¼
ê
•
ÿ
Ý
–
.
¼
ê
.
e
5
‰
Ñ
P
(
R
,X,µ,ν
)
˜
5
Ÿ
,
Ä
k
Š
X
e
b
:
(
M
1
)
é
u
¤
k
τ
∈
R
,
•
3
β>
0
Ú
k
.
«
m
I
¦
e
A
∈L
…
A
∩
I
=
∅
,
K
k
µ
(
{
a
+
τ,a
∈
A
}
)
≤
βµ
(
A
)
.
(
M
2
)
µ,ν
∈M
…
limsup
T
→∞
µ
([
−
T,T
])
ν
([
−
T,T
])
<
∞
†
[21]
y
²
a
q
,
·
‚
Œ
±
Ú
n
2.1.
µ,ν
∈M
÷
v
(
M
1
)
,
K
E
(
R
,X,µ,ν
)
Ú
P
(
R
,X,µ,ν
)
´
²
£
ØC
,
…
ÿ
Ý
–
.
¼
ê
©
)
´
•
˜
.
Ú
n
2.2.
µ,ν
∈M
÷
v
(
M
1
)
Ú
(
M
2
)
,
K
P
(
R
,X,µ,ν
)
3
þ(
.
‰
ê
|·|
∞
e
´
Banach
˜
m
.
Ú
n
2.3.
µ,ν
∈M
…
÷
v
(
M
1
)
,
(
M
2
)
,
e
f
∈E
(
R
,X,µ,ν
)
,
G
∈
L
1
(
R
,B
(
X
))
,
K
E
(
R
,X,µ,ν
)
þ
ò
È
f
∗
G
(
f
∗
G
)(
t
) =
Z
+
∞
−∞
G
(
s
)
f
(
t
−
s
)
ds
∈E
(
R
,X,µ,ν
)
,t
∈
R
.
y
²
.
d
Ú
n
2.1
Ø
J
w
Ñ
,
é
u
¤
k
s
∈
R
k
f
(
·−
s
)
∈E
(
R
,X,µ,ν
)
,
Š
â
Fubini
½
n
,
k
1
ν
([
−
T,T
])
Z
[
−
T,T
]
|
(
f
∗
G
)(
t
)
|
dµ
(
t
)
≤
1
ν
([
−
T,T
])
Z
[
−
T,T
]
Z
+
∞
−∞
|
G
(
s
)
||
f
(
t
−
s
)
|
dsdµ
(
t
)
≤
Z
+
∞
−∞
|
G
(
s
)
|
ν
([
−
T,T
])
Z
[
−
T,T
]
|
f
(
t
−
s
)
|
dµ
(
t
)
ds.
DOI:10.12677/aam.2023.1252502483
A^
ê
Æ
?
Ð
•
2
Š
â
G
∈
L
1
(
R
,B
(
X
))
±
9
0
≤
|
G
(
s
)
|
ν
([
−
T,T
])
Z
[
−
T,T
]
|
f
(
t
−
s
)
|
dµ
(
t
)
≤
sup
T
→∞
µ
([
−
T,T
])
ν
([
−
T,T
])
·|
G
(
s
)
|·|
f
|
s
∈
R
,
d
Lebesgue
›
›
Â
ñ
½
n
Ú
f
(
·−
s
)
∈E
(
R
,X,µ,ν
),
lim
T
→
+
∞
Z
∞
−∞
|
G
(
s
)
|
ν
([
−
T,T
])
Z
[
−
T,T
]
|
f
(
t
−
s
)
|
dµ
(
t
)
ds
= 0
.
¤
±
f
∗
G
∈E
(
R
,X,µ,ν
)
.
3.
Ì
‡
(
Ø
ù
˜
Ü
©
,
·
‚
ò
ï
Ää
k
Ã
¡
ž
¢
PFDEs
P
(
R
,X,µ,ν
)
)
•
3
5
Ú
•
˜
5
¯
K
:
d
dt
u
(
t
) =
−
Au
(
t
)+
L
(
u
t
)+
f
(
t
)
,t
≥
σ,
u
σ
=
ϕ
∈B
.
(3.1)
Ù
¥
f
•
[
σ,
+
∞
)
N
X
ë
Y
¼
ê
§
−
A
3
X
þ
)
¤
)
Û
Œ
+
(
T
(
t
))
t
≥
0
§
é
u
0
<α<
1,
A
α
L
«
A
©
ê
˜
Ž
f
.
L
•
½
Â
3
f
˜
m
B
α
Š
3
X
¥
k
.
‚
5
Ž
f
,
Ù
¥
B
α
½
Â
•
B
α
=
{
ϕ
∈B
:
ϕ
(
θ
)
∈
D
(
A
α
)
,θ
≤
0
…
A
α
ϕ
∈B}
,
é
u
ϕ
∈B
α
½
Â
‰
ê
k
ϕ
k
α
=
k
A
α
ϕ
k
,A
α
ϕ
½
Â
•
(
A
α
ϕ
)(
θ
) =
A
α
(
ϕ
(
θ
))
,θ
≤
0
.
¼
ê
u
t
∈B
α
½
Â
•
u
t
(
θ
) =
u
(
t
+
θ
),
Ù
¥
θ
≤
0
.
•
ï
Ä
(3.1),
Ä
k
Ú
\X
e
b
:
(
H
1
)
−
A
:
D
(
A
)
→
X
´
Banach
˜
m
X
þ
)
Û
Œ
+
(
T
(
t
))
t
≥
0
Ã
¡
)
,
¦
|
T
(
t
)
x
|≤
Me
ωt
|
x
|
,t
≥
0
,x
∈
X,
Ù
¥
M
≥
1
…
ω
∈
R
.
Ø
”
˜
„
5
,
·
‚
Œ
±
b
0
∈
ρ
(
A
),
Ä
K
,
Œ
ò
−
A
+
δI
O
†
•
−
A
¦
0
∈
ρ
(
−
A
+
δI
).
(
H
2
)
é
ϕ
∈B
k
A
−
α
ϕ
∈B
,
Ù
¥
A
−
α
ϕ
½
Â
•
(
A
−
α
ϕ
)(
θ
) =
A
−
α
(
ϕ
(
θ
))
,
é
¤
k
θ
≤
0
¤
á
.
(
H
3
)
T
(
t
)
3
X
þ
´
;
,
é
¤
k
t>
0
¤
á
.
DOI:10.12677/aam.2023.1252502484
A^
ê
Æ
?
Ð
•
w
,
,
÷
v
b
(
H
1
)
…
0
<α<
1
ž
,
·
‚
Œ
±
½
Â
X
þ
‚
5
Ž
f
A
−
α
,
A
−
α
=
1
Γ(
α
)
Z
∞
0
t
α
−
1
T
(
t
)
dt,
Ù
¥
Γ
L
«
Gamma
¼
ê
Γ(
α
) =
Z
∞
0
t
α
−
1
e
−
αt
dt.
é
u
©
ê
˜
Ž
f
A
α
Ú
Ù
_
Ž
f
A
−
α
§
Ù
¥
0
<α<
1,
·
‚
k
X
e
5
Ÿ
µ
Ú
n
3.1.
[22]
0
<α<
1
…
(
H
1
)
¤
á
,
K
(
i
)
3
‰
ê
|
x
|
α
=
|
A
α
x
|
,x
∈
D
(
A
α
)
e
§
D
(
A
α
)
•
Banach
˜
m
.
e
©
¥
,
·
‚
^
X
α
L
«
Banach
˜
m
(
D
(
A
α
)
,
|·|
α
)
.
(
ii
)
T
(
t
) :
X
→
D
(
A
α
)
é
¤
k
t>
0
¤
á
.
(
iii
)
é
¤
k
x
∈
D
(
A
α
)
…
t
≥
0
,
k
T
(
t
)
A
α
x
=
A
α
T
(
t
)
x.
(
iv
)
é
¤
k
t>
0
,
A
α
T
(
t
)
3
X
þ
k
.
,
…
|
A
α
T
(
t
)
|≤
M
α
t
−
α
e
ωt
,x
∈
X,t>
0
,
(3.2)
Ù
¥
M
α
>
0
´
~
ê
,
ω
∈
R
…
d
(
H
1
)
‰
Ñ
.
(
v
)
A
−
α
´
X
þ
k
.
‚
5
Ž
f
,
…
D
(
A
α
)
=Im
(
A
−
α
)
.
e
5
,
·
‚
0
[16]
¥
Ä
g
Ú
\
ƒ
˜
m
B
ú
n
z
½
Â
.
b
B
´
¼
ê
l
(
−∞
,
0]
N
X
D
‰
˜
m
…
÷
v
X
e
Ä
ú
n
:
(
A
)
•
3
~
ê
N
,[0
,
+
∞
)
þ
Û
Ü
k
.
¼
ê
M
(
·
)
±
9
3
[0
,
+
∞
)
þ
ë
Y
¼
ê
K
(
·
),
¦
x
:
(
−∞
,a
]
→
X
3
[
σ,a
]
ë
Y
…
x
σ
∈B
,
σ<a
¤
á
,
K
é
u
¤
k
t
∈
[
σ,a
],
k
:
(
i
)
x
t
∈B
,
(
ii
)
3
«
m
[
σ,a
]
þ
,
t
→
x
t
'
u
k·k
ë
Y
,
(
iii
)
N
|
x
|≤k
x
t
k≤
K
(
t
−
σ
)sup
σ
≤
s
≤
t
|
x
(
s
)
|
+
M
(
t
−
σ
)
k
x
σ
k
.
(
B
)
B
´
Banach
˜
m
.
l
·
‚
Œ
±
Ú
n
3.2.
[23]
C
00
´
ä
k
;
|
ò
ë
Y
¼
ê
l
(
−∞
,
0]
N
X
˜
m
,
C
a
00
•
[
−
a,
0]
¥
ä
k
¼
ê
|
f
˜
m
…
±
‰
ê
ÿ
À
˜
—
§
K
k
C
a
00
→
B
.
·
K
3.1.
[2]
b
(
H
1
)
,
(
H
2
)
¤
á
,
e
B
÷
v
ú
n
(
A
)
-
(
B
)
,
K
B
α
÷
v
X
e
ú
n
(
e
A
)
-
(
e
B
)
:
(
e
A
)
e
x
: (
−∞
,a
]
→
X
α
3
[
σ,a
]
þ
ë
Y
…
x
σ
∈B
α
,
σ<a
,
K
é
u
¤
k
t
∈
[
σ,a
]
,
k
:
(
i
)
x
t
∈B
α
,
(
ii
)
3
«
m
[
σ,a
]
þ
,
t
→
x
t
'
u
k·k
α
ë
Y
,
DOI:10.12677/aam.2023.1252502485
A^
ê
Æ
?
Ð
•
(
iii
)
N
|
x
|
α
≤k
x
t
k
α
≤
K
(
t
−
σ
)sup
σ
≤
s
≤
t
|
x
(
s
)
|
α
+
M
(
t
−
σ
)
k
x
σ
k
α
.
(
e
B
)
B
α
´
Banach
˜
m
.
½
Â
3.1.
[2]
¡
¼
ê
u
: (
−∞
,a
]
→
X
α
•
(3.1)
)
,
e
Ù
÷
v
(
i
)
u
3
[
σ,a
]
þ
ë
Y
.
(
ii
)
u
(
t
) =
T
(
t
−
σ
)
ϕ
(0)+
R
t
σ
T
(
t
−
s
)[
L
(
u
s
)+
f
(
s
)]
ds
é
t
∈
[
σ,a
]
¤
á
.
(
iii
)
u
σ
=
ϕ
.
½
n
3.1.
[15]
b
(
H
1
)
,
(
H
2
)
¤
á
,
K
é
u
ϕ
∈B
α
,
3
t
≥
0
ž
,
(3.1)
•
3
•
˜
)
.
é
u
t
≥
0
,
·
‚
3
B
α
þ
½
Â
Ž
f
U
(
t
):
U
(
t
)(
ϕ
) =
u
t
(
·
,σ,ϕ,
0)
,
Ù
¥
u
(
·
,σ,ϕ,
0)
´
(3.1)
¥
f
= 0
,σ
= 0
ž
)
.
·
K
3.2.
[15]
(
U
(
t
))
t
≥
0
x
´
B
α
þ
r
ë
Y
Ž
f
Œ
+
,
Ù
Ã
¡
)
P
•
A
U
.
é
u
φ
∈B
,
t
≥
0
…
θ
≤
0,
·
‚
½
Â
‚
5
Ž
f
W
(
t
):
[
W
(
t
)
φ
](
θ
) =
φ
(0)
,
X
J
t
+
θ
≥
0
,
φ
(
t
+
θ
)
X
J
t
+
θ<
0
,
K
W
(
t
)
´
÷
v
e
ª
)
Œ
+
d
dt
u
(
t
) = 0
,
u
0
=
ϕ.
W
0
(
t
) =
W
(
t
)
|
e
B
,
Ù
¥
e
B
:=
{
φ
∈B
:
φ
(0) = 0
}
,
2
b
B
÷
v
ú
n
:
(
C
)
e
(
ϕ
n
)
n
≥
0
´
B
S
Cauchy
¿
…
3
(
−∞
,
0]
þ
;
Â
ñ
ϕ
,
K
ϕ
∈B
…
k
ϕ
n
−
ϕ
k→
0.
½
Â
3.2.
e
B
÷
v
ú
n
(
A
),(
B
),(
C
)
…
t
→
+
∞
ž
k
W
0
(
t
)
k→
0,
K
¡
Ù
•
P
~P
Á
˜
m
.
½
Â
3.3.
e
σ
(
A
U
)
∩
i
R
=
∅
,
K
¡
Œ
+
(
U
(
t
))
t
≥
0
´
V
-
.
½
n
3.2.
[2]
b
(
H
1
)
-
(
H
3
)
¤
á
.
2
b
B
•
P
~P
Á
˜
m
…
Œ
+
(
U
(
t
))
t
≥
0
´
V
-
,
K
˜
m
B
α
Œ
±
©
)
•
ü
‡
U
-
ØC4
f
˜
m
S
Ú
U
†
Ú
,
¦
3
U
þ
•
›
Œ
+
´
˜
‡
+
…
•
3
~
ê
N
0
,
÷
v
kU
(
t
)
ϕ
k
α
≤
N
0
e
−
%t
k
ϕ
k
α
,t
≥
0
,ϕ
∈
S,
kU
(
t
)
ϕ
k
α
≤
N
0
e
%t
k
ϕ
k
α
,t
≤
0
,ϕ
∈
U,
Ù
¥
S
Ú
U
©
O
¡
Š
´
-
½
˜
m
Ú
Ø
-
½
˜
m
.
DOI:10.12677/aam.2023.1252502486
A^
ê
Æ
?
Ð
•
é
u
n>ω
,
x
∈
X
,
½
Â
X
e
d
X
N
B
‚
5
Ž
f
Θ
n
,
(Θ
n
x
)(
θ
) =
n
(
nθ
+1)
R
(
n,A
)
x,
−
1
n
≤
θ
≤
0
,
0
,θ<
−
1
n
,
Ù
¥
R
(
n,
−
A
)=(
nI
+
A
)
−
1
.
é
u
x
∈
X
,
¼
ê
Θ
n
x
∈
C
00
((
−∞
,
0]
,X
α
)
3
[
−
1
,
0]
S
k
|
,
K
Θ
n
x
∈B
α
.
d
,
é
u
x
∈
X
,
k
k
Θ
n
x
k
α
≤
n
(
n
−
ω
)
1
−
α
K
(1)
M
α
Γ(1
−
α
)
|
x
|
.
(3.3)
ä
N
y
²
Œ
ë
„
©
z
[2].
d
V
-
5
^
‡
,
·
‚
X
e
½
n
µ
½
n
3.3.
[2]
b
(
H
1
)
-
(
H
3
)
¤
á
.
2
b
B
•
P
~P
Á
˜
m
…
Œ
+
(
U
(
t
))
t
≥
0
´
V
-
.
e
f
3
R
þ
k
.
,
K
(3.1)
3
R
þ
k
•
˜
k
.)
u
,
¿
k
X
e
L
ˆ
ª
:
u
t
=lim
n
→
+
∞
Z
t
−∞
U
s
(
t
−
s
)Π
s
(Θ
n
f
(
s
))
ds
−
lim
n
→
+
∞
Z
+
∞
t
U
u
(
t
−
s
)Π
u
(Θ
n
f
(
s
))
dst
∈
R
,
(3.4)
Ù
¥
U
s
(
t
)
,
U
u
(
t
)
©
O
•
U
(
t
)
3
S
Ú
U
þ
•
›
,
Π
s
,
Π
u
©
O
•
B
α
S
Ú
U
þ
Ý
K
.
½
n
3.4.
b
(
M
1
)
,
(
M
2
)
,
(
H
1
)
-
(
H
3
)
¤
á
¿
…
f
∈P
(
R
,X,µ,ν
)
.
2
b
B
•
P
~P
Á
˜
m
…
Œ
+
(
U
(
t
))
t
≥
0
´
V
-
.
K
(3.1)
k
•
˜
)
u
∈P
(
R
,X
α
,µ,ν
)
,
…
d
(3.4)
ª
‰
Ñ
.
y
²
.
Š
â
½
n
3.3,(3.1)
k
•
˜
k
.)
…
u
L
ˆ
ª
d
(3.4)
‰
Ñ
,
u
t
= (Γ
s
f
)(
t
)
−
(Γ
u
f
)(
t
)
,
Ù
¥
(Γ
s
f
)(
t
) =lim
n
→
+
∞
Z
t
−∞
U
s
(
t
−
s
)Π
s
(Θ
n
f
(
s
))
ds,
(Γ
u
f
)(
t
) =lim
n
→
+
∞
Z
+
∞
t
U
u
(
t
−
s
)Π
u
(Θ
n
f
(
s
))
ds.
Ï
•
f
∈P
(
R
,X,µ,ν
),
l
Œ
f
=
g
+
ϕ
,
Ù
¥
g
∈A
(
R
,X
),
ϕ
∈E
(
R
,X,µ,ν
),
K
(Γ
s
f
)(
t
)=
F
1
(
t
)+
F
2
(
t
)
,
Ù
¥
F
1
(
t
) =lim
n
→
+
∞
Z
t
−∞
U
s
(
t
−
s
)Π
s
(Θ
n
g
(
s
))
ds,
F
2
(
t
) =lim
n
→
+
∞
Z
t
−∞
U
s
(
t
−
s
)Π
s
(Θ
n
ϕ
(
s
))
ds.
(
i
)
F
1
∈A
(
R
,
B
α
).
DOI:10.12677/aam.2023.1252502487
A^
ê
Æ
?
Ð
•
é
u
g
∈
P
ω,ρ
(
t
)
(
R
,X
),
Ø
J
y
²
F
1
(
t
+
ω
) =lim
n
→
+
∞
Z
t
−∞
U
s
(
t
−
s
)Π
s
(Θ
n
g
(
s
+
ω
))
ds
=
ρ
(
t
)
F
1
(
t
)
,
K
F
1
∈
P
ω,ρ
(
t
)
(
R
,
B
α
).
a
q
,
e
g
∈
P
ωap
(
R
,X
),
g
∈
P
ω
(
R
,X
),
g
∈
P
ω,k
(
R
,X
),
©
O
Œ
±
F
1
∈
P
ωap
(
R
,
B
α
),
F
1
∈
P
ω
(
R
,
B
α
),
F
1
∈
P
ω,k
(
R
,
B
α
).
é
u
g
∈
AP
(
R
,X
),
Š
â
½
n
3.2,
•
3
~
ê
f
M>
0
÷
v
kF
1
(
t
+
τ
)
−F
1
(
τ
)
k
α
≤
lim
n
→
+
∞
Z
t
−∞
N
0
e
−
%
(
t
−
s
)
k
Π
s
(Θ
n
(
g
(
s
+
τ
)
−
g
(
s
)))
k
α
ds
≤
f
Mε,
K
F
1
∈
AP
(
R
,
B
α
).
a
q
(
Ø
é
u
AA
(
R
,X
)
•
¤
á
.
Ï
d
,
e
g
∈A
((
R
,X
),
Œ
F
1
∈A
(
R
,
B
α
).
(
ii
)
F
2
∈E
(
R
,
B
α
,µ,ν
).
d
(
H
1
)
Ú
(3.3)
Œ
,
•
3
~
ê
e
K>
0
÷
v
kF
2
(
t
)
k
α
≤
e
K
Z
t
−∞
e
−
%
(
t
−
s
)
|
ϕ
(
s
)
|
ds.
(3.5)
½
Â
©
ã
¼
ê
G
:
t
≥
0
ž
G
(
t
) =
e
−
%t
,
t<
0
ž
G
(
t
) = 0,
¤
±
Z
t
−∞
e
−
%
(
t
−
s
)
|
ϕ
(
s
)
|
ds
=
Z
+
∞
0
e
−
%s
|
ϕ
(
t
−
s
)
|
ds
=
Z
+
∞
−∞
G
(
s
)
|
ϕ
(
t
−
s
)
|
ds.
du
t
→|
ϕ
(
t
)
|∈E
(
R
,
R
,µ,ν
),
Š
â
Ú
n
2.3
Œ
t
→
R
t
−∞
e
−
%
(
t
−
s
)
|
ϕ
(
s
)
|
ds
∈E
(
R
,
R
,µ,ν
)
,
Š
â
(3.5)
Œ
F
2
∈E
(
R
,
B
α
,µ,ν
),
Ï
d
Γ
s
f
∈P
(
R
,
B
α
,µ,ν
).
a
q
/
,
·
‚
k
Γ
u
f
∈P
(
R
,
B
α
,µ,ν
).
½
n
y
.
4.
~
f
•
Ä
˜
a
2
•
ï
Ä
)
Ô
ê
Æ
.
[2,3,10]
§
=
X
e
ä
k
Ã
¡
ž
¢
‡
©•
§
:
∂
∂t
u
(
t,x
) =
n
X
i,j
=1
∂
∂x
i
a
ij
(
x
)
∂
∂x
j
u
(
t,x
)
−
a
0
u
(
t,x
)+
ε
n
X
i
=1
∂
∂x
i
u
(
t
−
r,x
)
+
R
0
−∞
β
(
θ
)
u
(
t
+
θ,x
)
dθ
+Θ(
t,x
)
t
≥
σ,x
∈
Ω
,
u
(
t,x
) = 0
t
≥
σ,x
∈
∂
Ω
,
u
(
σ
+
θ,x
) =
ϕ
0
(
θ,x
)
−∞
<θ
≤
0
,x
∈
Ω
,
(4.1)
Ù
¥
σ
∈
R
,
a
0
,r
Ú
ε
•
~
ê
,Ω
•
R
n
S
k
.
m
8
…
ä
k
1
w
>
.
∂
Ω,
β
:(
−∞
,
0]
→
R
•
¼
ê
,Θ:[
σ,
+
∞
)
×
Ω
→
R
•
ë
Y
¼
ê
,
a
ij
∈
L
∞
(Ω)
´
é
¡
…
•
3
η>
0
é
x
∈
Ω
,ξ
∈
R
n
DOI:10.12677/aam.2023.1252502488
A^
ê
Æ
?
Ð
•
k
n
P
i,j
=1
a
ij
ξ
i
ξ
j
≥
η
|
ξ
|
2
.
X
=
L
2
(Ω),
2
½
Â
‚
5
Ž
f
A
:
D
(
A
)
⊂
X
→
X
:
D
(
A
) =
H
2
(Ω)
∩
H
1
0
(Ω)
A
=
−
n
P
i,j
=1
∂
∂x
i
a
ij
(
x
)
∂
∂x
j
.
Ú
n
4.1.
[22]
−
A
´
X
þ
;)
Û
Œ
+
(
T
(
t
))
≥
0
Ã
¡
)
¤
.
d
,
Ì
σ
(
−
A
)
´
l
Ñ
Ì
…
σ
(
−
A
) =
{
λ
n
:
n
∈
N
}
,
Ù
¥
···
<λ
n
+1
<λ
n
<
···
<λ
0
<
0
.
Ú
n
4.2.
[24]
|∇|
Ú
k·k
1
2
3
D
(
A
1
2
)
þ
d
.
d
,
·
‚
k
√
η
|∇
ψ
|≤k
ψ
k
1
2
≤
q
n
max
1
≤
i,j
≤
n
|
a
ij
|
L
∞
|∇
ψ
|
,
Ù
¥
∇
L
«
F
Ý
•
þ
.
é
u
γ>
0,
½
Â
B
=
C
γ
=
{
ϕ
∈
C
((
−∞
,
0]
,X
) :lim
θ
→−∞
e
γθ
ϕ
(
θ
)
3
X
þ
•
3
}
é
u
ϕ
∈
C
γ
,
½
Â
‰
ê
|
ϕ
|
= sup
θ
≤
0
e
γθ
ϕ
(
θ
).
Ú
n
4.3.
[23]
B
÷
v
(
A
)
,
(
B
)
,
(
C
)
…
•
P
~P
Á
˜
m
.
½
Â
‚
5
Ž
f
L
:
B
1
2
→
X
:
L
(
φ
) =
−
a
0
φ
(0)+
ε
n
X
i
=1
∂
∂x
i
φ
(
−
r
)+
Z
0
−∞
β
(
θ
)
φ
(
θ
)
dθ,
3
B
1
2
þ
½
Â
‰
ê
k
ϕ
k
1
2
= sup
θ
≤
0
e
γθ
|
A
1
2
ϕ
(
θ
)
|
.
e
¡
·
‚
b
:
(
A
1
)
e
−
2
γ
β
∈
L
2
(
R
−
).
(
A
2
)
R
0
−∞
|
β
(
θ
)
|
dθ<a
0
.
Ú
n
4.4.
[2]
(
A
1
)
¤
á
,
K
L
´
d
B
1
2
N
X
k
.
‚
5
Ž
f
.
½
Â
f
:
R
→
X
•
f
(
t
)(
x
) = Θ(
t,x
),
Ù
¥
t
∈
R
,x
∈
Ω
…
u
(
t
)(
x
) =
u
(
t,x
)
t
≥
σ,x
∈
Ω
,
ϕ
(
θ
)(
x
) =
ϕ
0
(
θ,x
)
θ
≤
0
,x
∈
Ω
,
DOI:10.12677/aam.2023.1252502489
A^
ê
Æ
?
Ð
•
K
(4.1)
Œ
-
#
L
ˆ
•
X
e
Ä
–
‡
©•
§
/
ª
µ
d
dt
u
(
t
) =
−
Au
(
t
)+
L
(
u
t
)+
f
(
t
)
,t
≥
0
,
u
0
=
ϕ.
(4.2)
ϕ
∈B
1
2
,
Š
â
½
n
3.1,
K
(4.2)
3
(
−∞
,
+
∞
)
þ
•
3
•
˜
)
u
.
(
U
(
t
))
t
≥
0
´
(4.2)
3
B
1
2
þ
)
Œ
+
,
…
A
U
´
Ù
Ã
¡
)
¤
.
Š
â
(
U
(
t
))
t
≥
0
V
-
5
,
·
‚
Œ
±
Ú
n
4.5.
[2]
e
(
A
1
)
,
(
A
2
)
¤
á
,
K
é
u
ε<
1
nM
1
2
q
−
λ
0
η
π
,
k
σ
(
A
U
)
⊂{
λ
∈
C
:
Re
(
λ
)
<
0
}
.
µ
=
ν
¿
b
Ù
Radon-Nikodym
ê
•
ρ
(
t
) =
e
t
,t
≤
0
,
1
,t>
0
.
d
[25]
Œ
•
,
µ,ν
∈M
÷
v
(
M
1
)
Ú
(
M
2
),
2
Š
â
½
n
3.4,
Œ
±
½
n
4.1.
3
±
þ
b
e
,
…
e
f
∈P
(
R
,X,µ,ν
)
,
K
(4.1)
k
•
˜
k
.)
u
∈P
(
R
,X
1
2
,µ,ν
)
.
5
4.1
.
©
|
^
©
ê
˜
Ž
f
n
Ø
Ú
Ž
f
Œ
+
n
Ø
y
²
PFDEs
ÿ
Ý
–
.
)
•
3
•
˜
5
§
Ï
L
Ú
\
ÿ
Ý
§
½
Â
˜
a
ÿ
Ý
–
.
¼
ê
§
y
²
Ù
¤
˜
m
ä
k
5
§
é
‡
±
Ï
§
±
Ï
§
V
±
Ï
§
A
g
Å
§
–
V
±
Ï
§
–
A
g
Å
Ä
å
Æ5
Ÿ
?
1
Ú
˜
/
ï
Ä
§
l
/
ª
Ú
(
Ø
•
\{
'
"
Ó
ž
,
˜
•
¡
§
·
‚
•
5
¿
§
3
^
‡
(
H
3
)
¥
,
‡
¦
)
Û
Œ
+
T
(
t
)
3
X
þ
´
;
,
ù
´
˜
‡
'
r
^
‡
§
ä
N
A^
¥
•
ØB
u
y
§
X
Û
K
½
ö
~
f
^
‡
(
H
3
)
´
Š
&?
˜
‡
¯
K
§
•
´
·
‚
8
ï
Ä
•
•
"
ë
•
©
z
[1]Adimy,M.,Ezzinbi,K.andOuhinou,A.(2006)VariationofConstantsFormulaandAlmost
PeriodicSolutions forSome Partial Functional Differential Equationswith InfiniteDelay.
Jour-
nalofMathematicalAnalysisandApplications
,
317
,668-689.
https://doi.org/10.1016/j.jmaa.2005.07.002
[2]Elazzouzi, A. andOuhinou, A. (2010) Variation ofConstants Formula andReduction Principle
for aClass of Partial Functional DifferentialEquations withInfinite Delay.
NonlinearAnalysis
,
73
,1980-2000.https://doi.org/10.1016/j.na.2010.05.028
[3]Ezzinbi,K.,Kyelem,B.A.andOuaro,S.(2014)Periodicityinthe
α
-NormforPartialFunc-
tionalDifferentialEquationsinFadingMemorySpaces.
NonlinearAnalysis
,
97
,30-54.
https://doi.org/10.1016/j.na.2013.10.026
[4]Adimy, M., Ezzinbi, K.and Marquet, C.(2014) Ergodic andWeightedPseudo-Almost Periodic
SolutionsforPartialFunctionalDifferentialEquationsinFadingMemorySpaces.
Journalof
Applied Mathematicsand Computing
,
44
,147-165.https://doi.org/10.1007/s12190-013-0686-9
DOI:10.12677/aam.2023.1252502490
A^
ê
Æ
?
Ð
•
[5]Ezzinbi,K.,Fatajou,S.andN’Gu´er´ekata,G.M.(2008)Massera-TypeTheoremfortheEx-
istenceof
C
(
n
)
-Almost-PeriodicSolutionsforPartialFunctionalDifferentialEquationswith
InfiniteDelay.
NonlinearAnalysis
,
69
,1413-1424.
https://doi.org/10.1016/j.na.2007.06.041
[6]Ezzinbi,K.andZabsonre,I.(2013)PseudoAlmostPeriodicSolutionsofInfiniteClassfor
SomeFunctionalDifferentialEquations.
ApplicableAnalysis
,
92
,1627-1642.https://doi.org/
10.1080/00036811.2012.698003
[7]Ezzinbi, K., Fatajou, S. and N’Gu´er´ekata, G.M. (2008) Pseudo Almost Automorphic Solutions
for SomePartialFunctional Differential Equations withInfinite Delay.
ApplicableAnalysis
,
87
,
591-605.https://doi.org/10.1080/00036810802140681
[8]Ezzinbi,K.andN’Gu´er´ekata,G.M.(2007)AlmostAutomorphicSolutionsforPartialFunc-
tionalDifferentialEquationswithInfiniteDelay.
SemigroupForum
,
75
,95-115.
https://doi.org/10.1007/s00233-006-0659-5
[9]Ezzinbi,K.andMiraoui,M.(2015)
µ
-PseudoAlmostPeriodicandAutomorphicSolutionsin
the
α
-Normfor SomePartialFunctionalDifferential Equations.
NumericalFunctionalAnalysis
andOptimization
,
36
,991-1012.https://doi.org/10.1080/01630563.2015.1042273
[10]Ezzinbi,K.,Miraoui,M.andRebey,A.(2016)MeasurePseudo-AlmostPeriodicSolutionsin
the
α
-Norm to Some Neutral Partial Differential Equations with Delay.
MediterraneanJournal
ofMathematics
,
13
,3417-3431.https://doi.org/10.1007/s00009-016-0694-8
[11]Bouzahir, H.(2006)ExistenceandRegularity of Local Solutionsto Partial Neutral Functional
DifferentialEquationswithInfiniteDelay.
ElectronicJournalofDifferentialEquations
,
2006
,
PaperNo.88.
[12]Elazzouzi,A.andOuhinou,A.(2011)OptimalRegularityandStabilityAnalysisinthe
α
-
Norm foraClassofPartial FunctionalDifferential Equations withInfiniteDelay.
Discreteand
ContinuousDynamicalSystems
,
30
,115-135.https://doi.org/10.3934/dcds.2011.30.115
[13]Ezzinbi,K.,Ghnimi,S.andTaoudi,M.A.(2010)ExistenceandRegularityofSolutionsfor
NeutralPartial FunctionalIntegrodifferentialEquationswith InfiniteDelay.
NonlinearAnaly-
sis:HybridSystems
,
4
,54-64.https://doi.org/10.1016/j.nahs.2009.07.006
[14]Adimy,M.,Bouzahir,H.and Ezzinbi, K. (2004) Existenceand Stability for Some Partial Neu-
tralFunctionalDifferentialEquationswithInfiniteDelay.
JournalofMathematicalAnalysis
andApplications
,
294
,438-461.https://doi.org/10.1016/j.jmaa.2004.02.033
[15]Benkhalti,R.andEzzinbi,K.(2006)ExistenceandStabilityinthe
α
-NormforSomePartial
FunctionalDifferentialEquationswithInfiniteDelay.
DifferentialandIntegralEquations
,
19
,
545-572.https://doi.org/10.57262/die/1356050442
[16]Hale,J.andKato,J.(1978)PhaseSpaceforRetardedEquationswithUnboundedDelay.
FunkcialajEkvacioj
,
21
,11-41.
DOI:10.12677/aam.2023.1252502491
A^
ê
Æ
?
Ð
•
[17]Hasler, M.F.andN’Gu´er´ekata,G.M. (2014) Bloch-PeriodicFunctionsandSomeApplications.
NonlinearStudies
,
21
,21-30.
[18]Wang, J.L.andLi,H.F.(2006)TheWeighted Periodic FunctionandItsProperties.
Dynamics
ofContinuous,DiscreteandImpulsiveSystemsSeriesA:MathematicalAnalysis
,
13
,1179-
1183.
[19]Fink,A.M.(1974)AlmostPeriodicDifferentialEquations.Springer,NewYork.
https://doi.org/10.1007/BFb0070324
[20]Bochner, S. (1962) A New Approach to Almost Periodicity.
ProceedingsoftheNationalAcade-
myofSciencesoftheUnitedStatesofAmerica
,
48
,2039-2043.
https://doi.org/10.1073/pnas.48.12.2039
[21]Diagana,T., Ezzinbi,K.andMiraoui,M.(2014)Pseudo-AlmostPeriodicandPseudo-Almost
AutomorphicSolutionstoSomeEvolutionEquationsInvolvingTheoreticalMeasureTheory.
Cubo
,
16
,1-31.https://doi.org/10.4067/S0719-06462014000200001
[22]Pazy,A.(1983)Semigroup ofLinear OperatorsandApplications toPartialDifferentialEqua-
tions,Springer-Verlag,NewYork.https://doi.org/10.1007/978-1-4612-5561-1
[23]Hino, Y., Murakami,S. and Naito, T. (1991) Functional Differential Equations with Unbound-
edDelay.In:
LecturesNotes
,Vol.1473,SpringerBerlin,Heidelberg.
https://doi.org/10.1007/BFb0084432
[24]Adimy,M.,Elazzouzi, A.andEzzinbi, K.(2009)ReductionPrinciple andDynamicBehaviors
foraClassofPartialFunctionalDifferentialEquations.
NonlinearAnalysis
,
71
,1709-1727.
https://doi.org/10.1016/j.na.2009.01.008
[25]Blot,J.,Cieutat,P.andEzzinbi,K.(2013)NewApproachforWeightedPseudo-AlmostPeri-
odic FunctionsundertheLight of MeasureTheory,BasicResultsandApplications.
Applicable
Analysis
,
92
,493-526.https://doi.org/10.1080/00036811.2011.628941
DOI:10.12677/aam.2023.1252502492
A^
ê
Æ
?
Ð