设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(5),1321-1332
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135135
˜
a
‘
™
ê
A
Holling-Tanner
.
Hopf
©
|
ëëë
ÊÊÊ
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2023
c
4
18
F
¶
¹
^
F
Ï
µ
2023
c
5
22
F
¶
u
Ù
F
Ï
µ
2023
c
5
29
F
Á
‡
©
æ
^
•
¹
Ô
;
J
¤
Holling-Tanner
Ó
ö
-
.ï
Ä
du
Ó
ö
™
ê
—
‡
Ó
ö
1
•
K
•
"
Ä
k
?
Ø
²
ï
:
Û
Ü
ì
C
-
½
5
§
,
±
Ó
ö
™
ê
Y
²
k
•
©
|
ë
ê
§
‰
Ñ
Hopf
©
|
•
3
^
‡
"
•
§
|
^
5
‰
.
n
Ø
§
Poinca
´
e
-Andronov-Hopf
©
|
½
n
Ú
¥
%
6
/
½
n
©
Û
Hopf
©
|
•
•
9
©
|±
Ï
)
-
½
5
"
Ï
L
O
Ž
©
Û
§
u
y
™
ê
A
Œ
±
ü
$
Ó
ö3
²
ï
G
e
«
+
—
Ý
"
'
…
c
Holling-Tanner
.
§
™
ê
A
§
²
ï
:
§
-
½
5
§
Hopf
©
|
HopfBifurcationofaHolling-Tanner
ModelwithFearEffect
QianZhao
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.18
th
,2023;accepted:May22
nd
,2023;published:May29
th
,2023
©
Ù
Ú
^
:
ë
Ê
.
˜
a
‘
™
ê
A
Holling-Tanner
.
Hopf
©
|
[J].
n
Ø
ê
Æ
,2023,13(5):1321-1332.
DOI:10.12677/pm.2023.135135
ë
Ê
Abstract
Inthispaper,weinvestigatetheinfluenceofanti-predatorbehaviourduetothefear
of predators with a Holling-Tanner preydator-prey model incorporating a prey refuge.
First,thelocalasymptoticstabilityoftheequilibriumpointsisdiscussed,andthen
theconditionoftheexistenceofHopfbifurcationisgivenbytakingthefearlevel
k
ofthepredatorasthebifurcationparameter.Finally,usingthecanonicaltheoryand
thecentralmanifoldtheorem,thedirectionofHopfbifurcationandthestabilityof
periodicsolutionofbifurcationareanalyzed.Throughcalculationandanalysis,itis
found that thefear effect can reducethe population densityof predator atthe positive
equilibrium.
Keywords
Holling-TannerModel,FearEffect,EquilibriumPoints,Stability,HopfBifurcation
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
Holling-Tanner
Ó
ö
-
.
®
²
Ú
å
N
õ
Æ
ö
'
5
Ú
ï
Ä
,
c
Ù
é
u
ä
k
'
~
•
6
Ó
X
Ú
ƒ
'
¯
K
ï
Ä
,
N
õ
Æ
ö
®
²
é
.
(1.1)
Ä
å
Æ
?
1
?
Ø
.
3
[1]
¥
,
Š
ö
ï
Ä
²
ï
)
Û
5
Ÿ
Ú
4
•
‚
•
3
•
˜
5
.
©
[2]
¥
©
Û
T
.
•
3
˜
‡
‡
.
Hopf
©
|
,
©
[3]
é
'
Ç
•
6
Holling-Tanner
Ó
.
Û
Ä
?
1
©
a
.
d
x
d
t
=
rx
(1
−
x
K
)
−
αxy
Ay
+
x
,
d
y
d
t
=
sy
(1
−
by
x
)
,
(1
.
1)
,
,
3
y
¢
N
õ
œ
¹
e
,
•
3
;
J
¤
,
Œ
þ
¢
ï
Ä
L
²
:
;
J
¤
é
Ó
ö
.
k
-
½
z
Š
^
.
'
u
;
J
¤
ï
Ä
,
©
z
[4–8]
Ñ
3
Ø
Ó
.
¥
Ñ
ƒ
A
/
\
\
;
J
¤
ù
‡
Ï
ƒ
?
DOI:10.12677/pm.2023.1351351322
n
Ø
ê
Æ
ë
Ê
1ï
Ä
,
û
r
[9]
3
.
(1.1)
¥
Ú
\
;
J
¤
,
©
Û
X
Ú
²
ï
)
Û
5
Ÿ
Ú
4
•
‚
•
3
•
˜
5
(
J
,
`
²
;
J
¤
é
Ú
Ó
ö
ƒ
m
ƒ
p
Š
^k
X
-
½
k
K
•
.
©
[10]
¥
,
Š
ö
ï
Ä
X
Ú
(1.2)
¤
«
,
˜
a
ä
k
;
J
¤
Ú
~
êÂ
¼
Ó
X
Ú
©
|
5
Ÿ
,
u
y
k
;
J
¤
Ú
~
ê
Â
¼
,
X
Ú
Ä
å
Æ
•
\
´
L
.
d
x
d
t
=
rx
(1
−
x
K
)
−
αy
(
x
−
m
)
Ay
+
x
−
m
−
h,
d
y
d
t
=
sy
(1
−
by
x
−
m
)
,
(1
.
2)
C
c
,
N
õ
Æ
ö
ï
Ä
Ó
ö
1
•
é
Ô
K
•
,
~
X
Ó
ö
™
ê
Ï
ƒ
.2016
c
,
[11]
J
Ñ
™
ê
Ï
f
f
(
k,y
)=
1
1+
ky
,
Ù
¥
,
k
‡
A
d
Ó
ö
)
™
ê
§
Ý
.
3
©
z
[12–14]
ï
Ä
¥
•
Ä
™
ê
Ï
ƒ
Ú
\
é
Ó
ö
Ú
Ô
K
•
,
Ü
[12]
u
y
™
ê
A
Œ
±
ü
$
Ó
ö
«
+
—
Ý
.
©
[15]
¥
u
y
™
ê
Y
²
O
\
Œ
±
Ï
L
ž
Ø
±
Ï
)
5
J
p
X
Ú
-
½
5
,
¦
?
u
•
²
ï
G
Ó
ö
«
+
ê
þ
~
,
Ø
¬
—
Ó
ö
«
ý
.
©
[16]
¥
,
u
y
du
Ó
ö
™
ê
ü
$
Ô
)
•
„
Ç
.
•
u
d
,
©
(
Ü
©
z
[10]
•
Ä
•
¹
Ô
;
J
¤
Holling-Tanner
.
X
(1.3)
¤
«
,
ï
Ä
du
Ó
ö
™
ê
—
‡
Ó
ö
1
•
K
•
.
d
x
d
t
=
rx
1+
ky
−
βx
2
−
ay
(
x
−
m
)
Ay
+
x
−
m
,
d
y
d
t
=
sy
(1
−
by
x
−
m
)
,
(1
.
3)
Ù
¥
,
r
,
K
,
α
,
A
,
s
,
b
þ
•
~
ê
,
x
Ú
y
©
OL
«
3
t
ž
•
Ú
Ó
ö
«
+
—
Ý
,
r
,
s
“
L
Ù
ˆ
g
S
O
•
Ç
,
K
•
‚
¸
é
•
Œ
N
B
þ
,
α
Ú
A
©
O
•
Ó
ö
Ó
¼
Ç
ÚÚ
Œ
Ú
~
ê
,
x
b
´
•
6
u
Ó
ö
«
1
U
å
.
Ù
¥
,
m
L
«¦
^
;
J
¤
ð
½
ê
þ
,
k
(
>
0)
L
«
™
ê
Y
²
,
β
:=
r
K
.
©
(
S
ü
X
e
:
1
1
!
Ì
‡
0
.
µ
9
Ù
ï
Ä
¿Â
;
1
2
!
é
X
Ú
(1.3)
²
ï
:
-
½
5
?
1
©
Û
;
1
3
!
$
^
Poinca´
e
-Andronov-Hopf[17]
©
|
½
n
?
Ø
Hopf
©
|
•
3
5
;
1
4
!
Ï
L5
‰
.
n
Ø
,Poinca´
e
-Andronov-Hopf
©
|
½
n
±
9
©
[18]
•{©
Û
Hopf
©
|
•
•
9
©
|±
Ï
)
-
½
5
;
1
5
!
?
Ø
™
ê
A
é
Ú
Ó
ö
K
•
;
1
6
!)
º
©
Ì
‡
(
Ø
.
2.
²
ï
:
•
3
5
Ú
-
½
5
2.1.
²
ï
:
•
3
5
d
.
(1.3)
²
ï
:
k
²
…
²
ï
:
E
0
=(0
,
0),
Œ
²
…
²
ï
:
E
1
=(
r
β
,
0),
²
ï
:
E
∗
= (
x
∗
,y
∗
),
x
∗
=
by
∗
+
m
,
y
∗
÷
v
˜
n
g
•
§
f
(
y
) :=
A
1
y
3
+
A
2
y
2
+
A
3
y
+
A
4
= 0
.
(2
.
1)
DOI:10.12677/pm.2023.1351351323
n
Ø
ê
Æ
ë
Ê
Ù
¥
,
A
1
=
βb
2
kA
+
βb
3
k>
0
,
A
2
=
βb
2
A
+
βb
3
+2
bβmkA
+2
bβmk
+
abk>
0
,
A
3
=
−
rbA
−
rb
2
+
βm
2
kA
+
βm
2
kb
+2
bmβA
+2
b
2
mβ
+
ab,
A
4
=
−
rmA
−
rmb
+
βm
2
A
+
βm
2
b.
¼
ê
f
(
y
)
'
u
y
¦
:
f
0
(
y
) = 3
A
1
y
2
+2
A
2
y
+
A
3
,
f
00
(
y
) = 6
A
1
y
+2
A
2
.
w
,
Œ
±
,
é
?
¿
y>
0,
f
00
(
y
)
>
0,
¿
›
X
f
0
(
y
)
3
(0
,
+
∞
)
þ
î
‚
4
O
.
•
(
½
f
(
y
) = 0
Š
´
Ä
•
3
,
·
‚
•
Ä
±
e
n
«
œ
/
:
(i)
m<
r
β
ž
,
f
(0)
<
0,
f
(
y
)=0
–
k
˜
‡
Š
.
X
J
k
≥
b
(
rA
+
rb
−
2
mβA
−
2
bmβ
−
a
)
βm
2
(
A
+
b
)
,
@
o
3
(0
,
+
∞
)
þ
f
0
(
y
)
>
0,
Ï
d
,
f
(
y
)=0
k
•
˜
Š
.
X
J
k<
b
(
rA
+
rb
−
2
mβA
−
2
bmβ
−
a
)
βm
2
(
A
+
b
)
,
@
o
3
(0
,
e
y
)
þ
f
0
(
y
)
<
0,
3
(
e
y,
+
∞
)
þ
f
0
(
y
)
>
0,
§
L
²
f
(
y
) =0
3
(0
,
+
∞
)
þ
•
õ
k
˜
‡
Š
.
Ï
d
,
f
(
y
) = 0
k
˜
‡
•
˜
Š
.
Ù
¥
e
y
=
−
(
βb
2
A
+
βb
3
+2
bβmkA
+2
bβmk
+
abk
)+
√
∆
3(
βb
2
kA
+
βb
3
k
)
∆ =
A
2
2
−
3
A
1
A
3
(ii)
m
=
r
β
ž
,
f
(0)=0.
a
q
/
,
X
J
k
≥
b
(
rA
+
rb
−
2
mβA
−
2
bmβ
−
a
)
βm
2
(
A
+
b
)
,
@
o
f
(
y
) = 0
v
k
Š
.
X
J
k<
b
(
rA
+
rb
−
2
mβA
−
2
bmβ
−
a
)
βm
2
(
A
+
b
)
,
@
o
f
(
y
) = 0
k
•
˜
Š
.
(iii)
m>
r
β
ž
,
f
(0)
>
0.
é
²
w
k
≥
b
(
rA
+
rb
−
2
mβA
−
2
bmβ
−
a
)
βm
2
(
A
+
b
)
ž
,
f
(
y
)=0
v
k
Š
.
k<
b
(
rA
+
rb
−
2
mβA
−
2
bmβ
−
a
)
βm
2
(
A
+
b
)
ž
,
X
J
f
(
e
y
)
>
0,
f
(
y
) = 0
v
k
Š
;
X
J
f
(
e
y
) = 0,
f
(
y
)= 0
k
˜
‡
Š
;
X
J
f
(
e
y
)
<
0,
f
(
y
) = 0
k
ü
‡
Š
.
n
þ
¤
ã
,
e
ã
(
Ø
¤
á
.
½
n
1
(i)
X
J
(
H
1
):
m<
r
β
,
@
o
X
Ú
(1.3)
k
˜
‡
•
˜
²
ï
:
E
∗
1
=(
x
∗
1
,y
∗
1
),
Ù
¥
,
x
∗
1
=
by
∗
1
+
m
.
(ii)
X
J
m
=
r
β
…
k<
b
(
rA
+
rb
−
2
mβA
−
2
bmβ
−
a
)
βm
2
(
A
+
b
)
,
@
o
X
Ú
(1.3)
k
˜
‡
•
˜
²
ï
:
,
E
∗
2
=
(
x
∗
2
,y
∗
2
),
Ù
¥
,
x
∗
2
=
by
∗
2
+
m
,
y
∗
2
=
−
A
2
+
√
A
2
2
−
4
A
1
A
3
2
A
1
.
(iii)
X
J
m>
r
β
…
k
≥
b
(
rA
+
rb
−
2
mβA
−
2
bmβ
−
a
)
βm
2
(
A
+
b
)
,
X
Ú
(1.3)
v
k
Š
.
(iv)
X
J
m>
r
β
…
k<
b
(
rA
+
rb
−
2
mβA
−
2
bmβ
−
a
)
βm
2
(
A
+
b
)
.
DOI:10.12677/pm.2023.1351351324
n
Ø
ê
Æ
ë
Ê
(a)
X
J
f
(
e
y
)
<
0,
X
Ú
(1.3)
k
ü
‡
²
ï
:
E
∗
3
= (
x
∗
3
,y
∗
3
)
Ú
E
∗
4
= (
x
∗
4
,y
∗
4
),
Ù
¥
,
y
∗
3
<
e
y<y
∗
4
,x
∗
i
=
by
∗
i
+
m
(
i
= 3
,
4)
.
(b)
X
J
f
(
e
y
)=0,
@
o
E
∗
3
†
E
∗
4
-
Ü
,
X
Ú
(1.3)
k
˜
‡
•
˜
²
ï
:
E
∗
5
=(
x
∗
5
,y
∗
5
),
Ù
¥
,
x
∗
5
=
b
e
y
+
m
,
y
∗
5
=
e
y
.
(c)
X
J
f
(
e
y
)
>
0,
X
Ú
(1.3)
v
k
²
ï
:
.
Y
©
=
'
5
(
H
1
) :
m<
r
β
¤
á
œ
/
,
Ù
¦
œ
/
Œ
a
q
?
Ø
.
2.2.
²
ï
:
Û
Ü
-
½
5
X
Ú
(1.3)
3
(
x,y
)
?
Jacobi
Ý
X
e
J
=
r
1+
ky
−
2
βx
−
aAy
2
(
Ay
+
x
−
m
)
2
−
rkx
(1+
ky
)
2
−
a
(
x
−
m
)
2
(
Ay
+
x
−
m
)
2
sby
2
(
x
−
m
)
2
s
−
2
sby
x
−
m
!
,
(2
.
2)
e
¡
Ï
L
O
Ž
X
Ú
(1.3)
3
z
‡
²
ï
:
?
Jacobi
Ý
A
Š
,
5
(
½
ù
²
ï
:
-
½
5
.
½
n
2
(i)
²
…
²
ï
:
E
0
= (0
,
0)
´
Ã
^
‡
Ø
-
½
.
(ii)
Œ
²
…
²
ï
:
E
1
= (
r
β
,
0)
´
Ã
^
‡
Ø
-
½
.
(iii)
b
(
H
1
)
¤
á
,
e
÷
v
(
H
2
)2
β
(
by
∗
+
m
)
>
r
1+
ky
∗
−
aA
(
A
+
b
)
2
,
²
ï
:
E
∗
1
= (
x
∗
1
,y
∗
1
)
´
Û
Ü
ì
C
-
½
,
‡
ƒ
´
Ø
-
½
.
y
²
(i)
X
Ú
(1.3)
3
²
ï
:
E
0
= (0
,
0)
?
Jacobi
Ý
•
J
(
E
0
)
=
r
−
a
0
s
.
(2
.
3)
Ý
(2.3)
A
Š
•
r
Ú
s
,
Ï
d
,
²
ï
:
E
0
´
Ø
-
½
.
(ii)
X
Ú
(1.3)
3
²
ï
:
E
1
= (
r
β
,
0)
?
Jacobi
Ý
•
J
(
E
1
)
=
−
r
−
kr
2
β
−
a
0
s
.
(2
.
4)
Ý
(2.4)
A
Š
•
−
r
Ú
s
,
Ï
d
,
²
ï
:
E
1
´
Ø
-
½
.
DOI:10.12677/pm.2023.1351351325
n
Ø
ê
Æ
ë
Ê
(iii)
X
Ú
(1.3)
3
²
ï
:
E
∗
1
= (
x
∗
1
,y
∗
1
)
?
Jacobi
Ý
•
J
(
E
∗
1
)
=
a
11
a
12
a
21
a
22
.
(2
.
5)
Ù
¥
,
a
11
=
r
1+
ky
∗
1
−
2
β
(
by
∗
1
+
m
)
−
aA
(
A
+
b
)
2
,a
12
=
−
rk
(
by
∗
1
+
m
)
(1+
ky
∗
1
)
2
−
ab
2
(
A
+
b
)
2
,
a
21
=
s
b
,a
22
=
−
s.
Ý
(2.5)
A
•
§
•
λ
2
−
Tλ
+
D
= 0
.
(2
.
6)
Ù
¥
,
D
=
det
[
J
(
E
∗
1
)] =
−
s
[
r
1+
ky
∗
1
−
2
β
(
by
∗
1
+
m
)
−
aA
(
A
+
b
)
2
]+
s
b
[
rk
(
by
∗
1
+
m
)
(1+
ky
∗
1
)
2
+
ab
2
(
A
+
b
)
2
]
,
T
=
tr
[
J
(
E
∗
1
)] =
r
1+
ky
∗
1
−
2
β
(
by
∗
1
+
m
)
−
aA
(
A
+
b
)
2
−
s.
¤
±
,
²
ï
:
-
½
5
d
D
Ú
T
Î
Ò
û
½
.
Ï
d
,
2
β
(
by
∗
1
+
m
)
>
r
1+
ky
∗
1
−
aA
(
A
+
b
)
2
ž
,
X
Ú
(1.3)
²
ï
:
E
∗
1
´
Û
Ü
ì
C
-
½
.
‡
ƒ
,
²
ï
:
E
∗
1
´
Ø
-
½
.
3.Hopf
©
|
•
3
5
!
À
™
ê
Y
²
k
Š
•
©
|
ë
ê
5
ï
Ä
X
Ú
(1.3)
3
²
ï
:
E
∗
1
?
Hopf
©
|
•
3
5
.
Ú
n
3
e
^
‡
(
H
1
)
¤
á
,
K
•
3
k
∗
>
0,
¦
k
=
k
∗
ž
r
1+
k
∗
y
∗
1
−
2
β
(
by
∗
1
+
m
)
−
aA
(
A
+
b
)
2
−
s
= 0
.
(3
.
1)
y
²
-
r
1+
ky
∗
1
−
2
β
(
by
∗
1
+
m
)
−
aA
(
A
+
b
)
2
−
s
= 0
k
k
=
r
(
A
+
b
)
2
y
∗
1
[2
β
(
by
∗
1
+
m
)(
A
+
b
)
2
+
aA
+
s
(
A
+
b
)
2
]
−
1
y
∗
1
.
-
k
∗
=
k
,
…
(
H
3
) :
r>
2
β
(
by
∗
1
+
m
)+
s
+
aA
(
A
+
b
)
2
.
Ï
d
,
•
3
k
∗
>
0,
¦
(3.1)
ª
¤
á
,
…
k
∗
>
0
´
•
˜
.
½
n
4
e
^
‡
(
H
1
),(
H
3
)
¤
á
,
K
k
=
k
∗
ž
,
X
Ú
(1.3)
3
²
ï
:
E
∗
1
?
)
Hopf
©
|
.
DOI:10.12677/pm.2023.1351351326
n
Ø
ê
Æ
ë
Ê
y
²
b
λ
(
k
) =
α
(
k
)
±
ω
(
k
)
´
A
•
§
(2.6)
Š
,
Ù
¥
α
(
k
) =
1
2
T
=
1
2
[
r
1+
ky
∗
1
−
2
β
(
by
∗
1
+
m
)
−
aA
(
A
+
b
)
2
−
s
]
,
ω
(
k
) =
1
2
√
4
D
−
T
2
,
(3
.
2)
k
=
k
∗
ž
,
α
(
k
∗
) = 0
,α
0
(
k
∗
) =
−
ry
∗
1
(
k
∗
)+
rky
∗
0
1
(
k
∗
)
2(1+
ky
∗
1
(
k
∗
))
2
−
βby
∗
0
1
(
k
∗
)
.
du
y
∗
1
÷
v
(2.1),
Ï
d
y
∗
0
1
(
k
∗
) =
(
βb
2
A
+
βb
3
)
y
∗
3
1
+(2
bβmA
+2
bβm
+
ab
)
y
∗
2
1
+(
βm
2
A
+
βm
2
b
)
y
∗
1
f
0
(
y
∗
1
)
,
d
2.1
!
?
Ø
¥•
:
e
²
ï
:
E
∗
1
•
3
,
K
f
0
(
y
∗
1
)
>
0,
¤
±
,
y
∗
0
1
(
k
∗
)
>
0,
?
α
0
(
k
∗
)
<
0.
n
þ
,
e
^
‡
(
H
1
),(
H
3
)
¤
á
,
k
=
k
∗
ž
,
(i)[
T
(
k
)]
k
=
k
∗
= 0;
(ii)[
D
(
k
)]
k
=
k
∗
>
0;
(iii)
d
dk
[
T
(
k
)]
k
=
k
∗
6
= 0.
Ï
d
,
d
Poinca´
e
-Andronov-Hopf
©
|
½
n
Œ
•
,
X
Ú
(1.3)
3
²
ï
:
E
∗
1
)
Hopf
©
|
.
4.Hopf
©
|
•
•
Ú
-
½
5
!
Ì
‡
ï
Ä
k
=
k
∗
ž
,
X
Ú
(1.3)
3
²
ï
:
E
∗
1
N
C
)
Hopf
©
|
•
•
9
d
©
|
)
±
Ï
)
-
½
5
.
²
£
(
x
∗
1
,y
∗
1
),
-
e
x
=
x
−
x
∗
1
,
e
y
=
y
−
y
∗
1
,
•
•
B
,
C
†
E
^
x
,
y
“
O
e
x
,
e
y
K
X
Ú
(1.3)
C
•
d
x
d
t
=
r
(
x
+
x
∗
1
)
1+
k
(
y
+
y
∗
1
)
−
β
(
x
+
x
∗
1
)
2
−
a
(
y
+
y
∗
1
)(
x
+
x
∗
1
−
m
)
A
(
y
+
y
∗
1
)+(
x
+
x
∗
1
)
−
m
,
d
y
d
t
=
s
(
y
+
y
∗
1
)(1
−
b
(
y
+
y
∗
1
)
(
x
+
x
∗
1
)
−
m
)
,
(4
.
1)
ò
(4.1)
ª
•
Œ
¤
X
e
/
ª
d
x
d
t
d
y
d
t
=
J
(
E
∗
1
)
x
y
+
f
(
x,y,k
)
g
(
x,y,k
)
.
(4
.
2)
DOI:10.12677/pm.2023.1351351327
n
Ø
ê
Æ
ë
Ê
Ù
¥
f
(
x,y,k
) =
a
1
x
2
+
a
2
xy
+
a
3
y
2
+
a
4
x
3
+
a
5
x
2
y
+
a
6
xy
2
+
a
7
y
3
+
···
,
g
(
x,y,k
) =
b
1
x
2
+
b
2
xy
+
b
3
y
2
+
b
4
x
3
+
b
5
x
2
y
+
b
6
xy
2
+
b
7
y
3
+
···
.
±
9
a
1
=
−
β
+
aAy
∗
2
1
(
Ay
∗
1
+
x
∗
1
−
m
)
3
,a
2
=
−
rk
(1+
ky
∗
1
)
2
−
2
aAy
∗
1
(
x
∗
1
−
m
)
(
Ay
∗
1
+
x
∗
1
−
m
)
3
,
a
3
=
rk
2
x
∗
1
(1+
ky
∗
1
)
3
+
aA
(
x
∗
1
−
m
)
2
(
Ay
∗
1
+
x
∗
1
−
m
)
3
,a
4
=
−
aAy
∗
2
1
(
Ay
∗
1
+
x
∗
1
−
m
)
4
,
a
5
=
2
aAy
∗
1
(
Ay
∗
1
+
x
∗
1
−
m
)
−
3
aA
2
y
∗
1
(
Ay
∗
1
+
x
∗
1
−
m
)
4
,
a
6
=
rk
2
(1+
ky
∗
1
)
3
−
aA
(
x
∗
1
−
m
)(
Ay
∗
1
+
x
∗
1
−
m
)
−
3
aA
2
y
∗
1
(
x
∗
1
−
m
)
(
Ay
∗
1
+
x
∗
1
−
m
)
4
,
a
7
=
−
rk
3
x
∗
1
(1+
ky
∗
1
)
4
−
aA
2
(
x
∗
1
−
m
)
2
(
Ay
∗
1
+
x
∗
1
−
m
)
4
,b
1
=
−
sby
∗
2
1
(
x
∗
1
−
m
)
3
,
b
2
=
2
sby
∗
1
(
x
∗
1
−
m
)
2
,b
3
=
−
sb
x
∗
1
−
m
,
b
4
=
sby
∗
2
1
(
x
∗
1
−
m
)
4
,b
5
=
−
2
sby
∗
1
(
x
∗
1
−
m
)
3
,
b
6
=
sb
(
x
∗
1
−
m
)
2
,b
7
= 0
.
½
Â
Ý
R
=
10
MN
.
Ù
¥
,
M
=
−
a
11
a
12
,
N
=
−
ω
(
k
)
a
12
,
K
k
R
−
1
J
(
E
∗
1
)
R
=
α
(
k
)
−
ω
(
k
)
ω
(
k
)
α
(
k
)
.
@
o
R
−
1
=
10
−
M
N
1
N
.
DOI:10.12677/pm.2023.1351351328
n
Ø
ê
Æ
ë
Ê
k
=
k
∗
ž
M
∗
:=
M
|
k
=
k
∗
,N
∗
:=
N
|
k
=
k
∗
,ω
∗
:=
ω
|
k
=
k
∗
.
Š
C
†
(
x,y
)
T
=
R
(
u,v
)
T
,
X
Ú
(4.2)
Œ
•
d
u
d
t
d
v
d
t
=
R
−
1
J
(
E
∗
1
)
R
u
v
+
R
−
1
fR
(
u,v,k
)
gR
(
u,v,k
)
,
=
d
u
d
t
d
v
d
t
=
α
(
k
)
−
ω
(
k
)
ω
(
k
)
α
(
k
)
u
v
=
f
1
(
u,v,k
)
g
1
(
u,v,k
)
.
(4
.
3)
Ù
¥
f
1
(
u,v,k
) =
f
(
u,Mu
+
Nv,k
)
= (
a
1
+
a
2
M
+
a
3
M
2
)
u
2
+(
a
2
+2
a
3
M
)
Nuv
+
a
3
N
2
v
2
+(
a
4
+
a
5
M
+
a
6
M
2
+
a
7
M
3
)
u
3
+(
a
5
+2
a
6
M
+3
a
7
M
2
)
Nu
2
v
+(
a
6
+3
a
7
M
)
N
2
uv
2
+
a
7
N
3
v
3
+
···
,
g
1
(
u,v,k
) =
−
M
N
f
(
u,Mu
+
Nv,k
)+
1
N
g
(
u,Mu
+
Nv,k
)
=
1
N
(
−
a
1
M
+
b
1
−
a
2
M
2
+
b
2
M
−
a
3
M
3
+
b
3
M
2
)
u
2
+(
−
a
2
M
+
b
2
−
2
a
3
M
2
+2
b
3
M
)
uv
+(
−
a
3
M
+
b
3
)
Nv
2
+
1
N
(
−
a
4
M
+
b
4
−
a
5
M
2
+
b
5
M
−
a
6
M
3
+
b
6
M
2
−
a
7
M
4
)
u
3
+(
−
a
5
M
+
b
5
−
2
a
6
M
2
+2
b
6
M
−
3
a
7
M
3
)
u
2
v
+(
−
a
6
M
+
b
6
−
3
a
7
M
2
)
Nuv
2
−
a
7
MN
2
v
3
+
···
.
e
¡
?
1
4
‹
IC
†
,
X
Ú
(4.3)
d
u
˙
τ
=
α
(
k
)
τ
+
p
(
k
)
τ
3
+
···
,
˙
θ
=
ω
(
k
)+
q
(
k
)
τ
2
+
···
,
(4
.
4)
DOI:10.12677/pm.2023.1351351329
n
Ø
ê
Æ
ë
Ê
3
k
=
k
∗
?
?
1
Taylor
Ð
m
˙
τ
=
α
0
(
k
∗
)(
k
−
k
∗
)
τ
+
p
(
k
∗
)
τ
3
+
o
((
k
−
k
∗
)
2
τ,
(
k
−
k
∗
)
τ
3
,τ
5
)
,
˙
θ
=
ω
(
k
∗
)+
ω
0
(
k
∗
)(
k
−
k
∗
)+
q
(
k
∗
)
τ
2
+
o
((
k
−
k
∗
)
2
,
(
k
−
k
∗
)
τ
2
,τ
4
)
.
(4
.
5)
•
ä
Hopf
©
|
•
•
±
9
d
©
|
)
±
Ï
)
-
½
5
,
I
O
Ž
p
(
k
∗
)
Î
Ò
,
=
p
(
k
∗
) :=
1
16
(
f
1
uuu
+
f
1
uvv
+
g
1
uuv
+
g
1
vvv
)
+
1
16
ω
(
k
∗
)
[
f
1
uv
(
f
1
uu
+
f
1
vv
)
−
g
1
uv
(
g
1
uu
+
g
1
vv
)
−
f
1
uu
g
1
uu
+
f
1
vv
g
1
vv
]
,
Ù
¥
¤
k
ê
Ñ
Š
u
©
|
:
(
u,v,k
) = (0
,
0
,k
∗
)
…
f
1
uuu
(0
,
0
,k
∗
) = 6(
a
4
+
a
5
M
0
+
a
6
M
2
0
+
a
7
M
3
0
)
,f
1
uvv
(0
,
0
,k
∗
) = 2(
a
6
+3
a
7
M
0
)
N
2
0
,
g
1
uuv
(0
,
0
,k
∗
) = 2(
−
a
5
M
0
+
b
5
−
2
a
6
M
2
0
+2
b
6
M
0
−
3
a
7
M
3
0
)
,g
1
vvv
(0
,
0
,k
∗
) =
−
6
a
7
M
0
N
2
0
,
f
1
uu
(0
,
0
,k
∗
) = 2(
a
1
+
a
2
M
0
+
a
3
M
2
0
)
,f
1
uv
(0
,
0
,k
∗
) = (
a
2
+2
a
3
M
0
)
N
0
,
f
1
vv
(0
,
0
,k
∗
) = 2
a
3
N
2
0
,g
1
uu
(0
,
0
,k
∗
) =
2
N
0
(
−
a
1
M
0
+
b
1
−
a
2
M
2
0
+
b
2
M
0
−
a
3
M
3
0
+
b
3
M
2
0
)
,
g
1
uv
(0
,
0
,k
∗
) =
−
a
2
M
0
+
b
2
−
2
a
3
M
2
0
+2
b
3
M
0
,g
1
vv
(0
,
0
,k
∗
) = 2(
−
a
3
M
0
+
b
3
)
N
0
.
½
˜
Lyapunov
X
ê
O
Ž
ú
ª
X
e
µ
2
=
−
p
(
k
∗
)
α
0
(
k
∗
)
.
Ï
•
α
0
(
k
∗
)
<
0,
d
Poinca´
e
-Andronov-Hopf
©
|
½
n
Œ
.
½
n
5
b
(
H
1
)-(
H
3
)
¤
á
,
K
3
k
=
k
∗
ž
,
X
Ú
(1.3)
3
E
∗
1
?
)
Hopf
©
|
.
(i)
p
(
k
∗
)
<
0
,
Hopf
©
|±
Ï
)
´
ì
C
-
½
…
©
|
•
•
´
æ
.
.
(ii)
X
J
p
(
k
∗
)
>
0
,
Hopf
©
|±
Ï
)
´
Ø
-
½
…
©
|
•
•
´
‡
.
.
5.Hopf
™
ê
A
é
Ú
Ó
ö
K
•
du
Ô
—
Ý
†
™
ê
Y
²
k
Ã
'
,
¤
±
™
ê
A
é
Ô
—
Ý
v
kK
•
.
Ï
d
,
·
‚
•
?
Ø
™
ê
A
é
Ó
ö
—
Ý
K
•
.
DOI:10.12677/pm.2023.1351351330
n
Ø
ê
Æ
ë
Ê
ò
y
∗
w
Š
´
'
u
k
ë
Y
¼
ê
,
'
u
k
¦
:
dy
∗
dk
=
−
(
βb
2
A
+
βb
3
)
y
∗
3
+(2
bβmA
+2
bβm
+
ab
)
y
∗
2
+(
βm
2
A
+
βm
2
b
)
y
∗
f
0
(
y
∗
)
é
u
²
ï
:
E
∗
1
X
J
•
3
,
@
o
f
0
(
y
∗
1
)
>
0,
¤
±
þ
ª
m
à
u
0,
=
dy
∗
1
dk
<
0
¤
á
.
=
Ó
ö
«
+
²
ï
—
Ý
y
∗
‘
k
O
Œ
Å
ì~
,
ù
´
Ï
•
™
ê
Y
²
Œ
ž
,
Œ
<
;Ó
5
õ
,
Ó
ö
Œ
¼
5
,
K
Ó
ö
²
ï
—
Ý
‘
ƒ
~
.
6.
(
Ø
©
ï
Ä
˜
a
‘
k
™
ê
A
Holling-Tanner
.
.
Ä
k
?
Ø
²
ï
:
Û
Ü
ì
C
-
½
5
,
,
±
Ó
ö
™
ê
Y
²
k
•
©
|
ë
ê
,
‰
Ñ
Hopf
©
|
•
3
^
‡
.
•
,
|
^
5
‰
.
n
Ø
,
Poinca´
e
-Andronov-Hopf
©
|
½
n
Ú
¥
%
6
/
½
n
©
Û
Hopf
©
|
•
•
9
©
|±
Ï
)
-
½
5
.
²
©
Û
O
Ž
u
y
™
ê
A
Œ
±
ü
$
Ó
ö3
²
ï
G
e
«
+
—
Ý
.
ë
•
©
z
[1]Liang, Z.and Pan, H.(2007) QualitativeAnalysis ofa Ratio-DependentHolling-TannerModel.
JournalofMathematicalAnalysisandApplications
,
334
,954-964.
https://doi.org/10.1016/j.jmaa.2006.12.079
[2]Wang,X.L. andWang,W.D. (2011)HopfBifurcationAnalysis ofa Ratio-Dependent Holling-
TannerPredator-PreyModel.
JournalofSouthwestUniversity(NaturalScienceEdition)
,
33
,
1-4.
[3]Rebaza,J.(2012)DynamicsofPreyThresholdHarvestingandRefuge.
JournalofComputa-
tionalandAppliedMathematics
,
236
,1743-1752.https://doi.org/10.1016/j.cam.2011.10.005
[4]Ma,Z., Li,W.,Zhao,Y.,Wang,W., Zhang,H.andLi, Z.(2009)Effectsof PreyRefuges ona
Predator-PreyModel withaClass ofFunctionalResponses:TheRoleof Refuges.
Mathematical
Biosciences
,
218
,73-79.https://doi.org/10.1016/j.mbs.2008.12.008
[5]Wang,L.andChen,W.(2008)QualitativeAnalysisofaPredator-PreyModelwithHolling
TypeIIFunctionalResponse.
JournalofSoutheastUniversity(NaturalScienceEdition)
,
38
,
No.2.
[6]Sih,A.(1987)PreyRefugesandPredator-PreyStability.
TheoreticalPopulationBiology
,
31
,
1-12.https://doi.org/10.1016/0040-5809(87)90019-0
[7]Huang,Y.,Chen,F.andZhong,L.(2006)StabilityAnalysisofaPrey-PredatorModelwith
HollingTypeIIIResponseFunctionIncorporatingaPreyRefuge.
AppliedMathematicsand
Computation
,
182
,672-683.https://doi.org/10.1016/j.amc.2006.04.030
DOI:10.12677/pm.2023.1351351331
n
Ø
ê
Æ
ë
Ê
[8]Uttam, D., Kar,T.K.and Pahari, U.K.(2013)Global Dynamicsof anExploited Prey-Predator
ModelwithConstantPreyRefuge.
ISRNBiomathematics
,
2013
,ArticleID:637640.
https://doi.org/10.1155/2013/637640
[9]
û
r
,
@
.
Ä
u
'
Ç
…
•
¹
;
J
Holling-Tanner
.
©
Û
[J].
ì
À
Œ
ÆÆ
:
n
Æ
‡
,
2009,44(3):56-60.
[10]Xia,L.andXing,Y.(2013)BifurcationsofaRatio-DependentHolling-TannerSystemwith
RefugeandConstantHarvesting.
AbstractandAppliedAnalysis
,
2013
,ArticleID:478315.
https://doi.org/10.1155/2013/478315
[11]Wang,X.Y.,Zanette,L.andZou,X.F.(2016)ModellingtheFearEffectinPredator-Prey
Interactions.
JournalofMathematicalBiology
,
73
,1179-1204.
https://doi.org/10.1007/s00285-016-0989-1
[12]Zhang,H.,Cai,Y.,Fu,S. andWang,W.(2019)ImpactoftheFearEffectinaPrey-Predator
ModelIncorporatingaPreyRefuge.
AppliedMathematicsandComputation
,
356
,328-337.
https://doi.org/10.1016/j.amc.2019.03.034
[13]
½
©
ï
.
‘
™
ê
Ï
f
IVlev
.
Ó
ö
-
†
*
Ñ
.
ž
˜
€
ã
[D]:[
a
¬
Æ
Ø
©
].
=
²
:
Ü
“
‰
Œ
Æ
,2022.
[14]Mondal,S.(2020)DynamicsofaDelayedPredator-PreyInteractionIncorporatingNonlinear
PreyRefugeundertheInfluenceofFearEffectandAdditionalFood.
JournalofPhysicsA:
MathematicalandTheoretical
,
53
, Article295601.https://doi.org/10.1088/1751-8121/ab81d8
[15]Xie,B.F.andZhang,N.(2022)InfluenceofFearEffectonaHollingTypeIIIPrey-Predator
SystemwiththePreyRefuge.
AIMSMathematics
,
7
,1811-1830.
https://doi.org/10.3934/math.2022104
[16]Wang,J.,Cai,Y.L.,Fu,S.M.andWang,W.M.(2019)TheEffectoftheFearFactoronthe
Dynamics of a Predator-Prey Model Incorporating the Prey Refuge.
Chaos(Woodbury,N.Y.)
,
29
,Article083109.
[17]Shi,H.B.andRuan,S.(2015)Spatial,TemporalandSpatiotemporalPatternsofDiffusive
PredatorPreyModelswithMutualInterference.
IMAJournalofAppliedMathematics
,
80
,
1534-1568.
[18]Kuznetsov, Y.A.(2013) Elements ofApplied BifurcationTheory.Springer Science& Business
Media,Berlin.
DOI:10.12677/pm.2023.1351351332
n
Ø
ê
Æ