设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(5),1389-1402
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135142
A
a
p
‚
5
è
E
444
©©©
ŸŸŸ
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2023
c
4
21
F
¶
¹
^
F
Ï
µ
2023
c
5
23
F
¶
u
Ù
F
Ï
µ
2023
c
5
30
F
Á
‡
$
-
‚
5
è
Ï
3
“—
•
•
Y
!
@
y
è
!
(
Ü
•
Y
!
r
K
ã
•
¡
ä
k
-
‡
A^
§
¤
±
2
•
ï
Ä
"
©
Ï
L
À
#
½
Â
8
§
E
A
a
#
p
‚
5
è
§
¿
|
^
•
ê
Ú
n
Ø
(
½
è
ë
ê
Ú
-
þ
©
Ù
§
•
`
²
©
E
‚
5
è
3
õ
ê
œ
¹
e
´
4
è
§
Œ
±
^
5
O
ä
k
û
Ð
–
¯
(
“—
•
•
Y
"
'
…
c
‚
5
è
§
½
Â
8
§
•
ê
Ú
§
-
þ
©
Ù
ConstructionofSeveralClassesof
p
-Ary
LinearCodes
WenhuiLiu
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.21
st
,2023;accepted:May23
rd
,2023;published:May30
th
,2023
Abstract
Linear codes with a fewweightsare widelystudied dueto theirimportant applications
©
Ù
Ú
^
:
4
©
Ÿ
.
A
a
p
‚
5
è
E
[J].
n
Ø
ê
Æ
,2023,13(5):1389-1402.
DOI:10.12677/pm.2023.135142
4
©
Ÿ
insecretsharing schemes,authentication codes,associationschemes,stronglyregular
graphs,etc.Inthispaper,severalclassesof
p
-arylinearcodesareconstructedby
selectinganewdefinitionset,andtheparametersandweightdistributionsofthe
codesaredeterminedbyexponentialsums.Finally,itisshownthatthelinearcodes
constructedinthispaperareminimallinearcodesinmostcases,whichcanbeused
todesignsecretsharingschemesswithgoodaccessstructures.
Keywords
LinearCode,DefiningSet,ExponentialSum,WeightDistribution
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
F
q
•
¹
k
q
‡
ƒ
k
•
•
,
Ù
¥
q
=
p
m
,p
•
Û
ƒ
ê
…
m
•
ê
,
F
∗
q
=
F
q
\{
0
}
.
k
•
•
F
p
þ
n
‘
•
þ
˜
m
F
n
p
k
‘
‚
5
f
˜
m
C
¡
•
è
•
•
n
,
&
E
•
k
p
[
n,k
]
‚
5
è
,
è
C
¥
z
˜
‡
•
þ
¡
•
è
i
.
-
A
i
L
«
è
C
¥-
þ
•
i
è
i
‡
ê
,
K
è
C
-
þ
O
ê
ì
½
Â
•
1+
A
1
z
+
A
2
z
2
+
...
+
A
n
z
n
,
S
(1
,A
1
,A
2
,...,A
n
)
¡
•
è
C
-
þ
©
Ù
.
e
(
A
1
,A
2
,...,A
n
)
¥
Ø
•
0
A
i
‡
ê
•
t
,
K
¡
è
C
•
t
-
è
.
‚
5
è
du
ä
k
û
Ð
“
ê
(
±
9
´
u
£
ã
Ú
\
)
—
A
5
,
¤
±
3
Ï
&
!
ê
â
•;
Ú
&
E
S
+
•
ä
k
-
‡
A^
,
A
O
/
,
ä
k
$
-
þ
‚
5
è
3
'
é
•
Y
[1],
“—
•
•
Y
[2],
r
K
ã
[3]
+
•
ä
k
-
‡
¿Â
,
¤
±
2
•
ï
Ä
.
Baumert[4]
3
1972
c
Ä
g
J
Ñ
|
^
½
Â
8
E
$
-
‚
5
è
•{
.2007
c
,Ding[5]
m
©
/
Ï•
ê
Ú
n
Ø
?
˜
Ú
Ï
L
d
•{
E
ä
k
$
-
þ
‚
5
è
.
ù
a
‚
5
è
ë
ê
Ð
€
d
½
Â
8
û
½
,
…
é
õ
®
•
‚
5
è
þ
Œ
Ï
L
d
•{
À
T
½
Â
8
,
Ï
d
é
õ
Æ
ö
}
Á
À
Ø
Ó
½
Â
8
?
1
E
,
ƒ
'
(
J
Œ
±
ë
•
©
z
[6–14]
,
ù
ó
Š
Ñ
4
Œ
´
L
‚
5
è
ï
Ä
.
C
A
c
,Ding
<
[15]
Ú
Li
<
[16]
ï
Ää
k
±
e
/
ª
‚
5
è
C
D
=
{
(Tr(
αx
))
x
∈
D
|
α
∈
F
q
}
,
(1)
À
½
Â
8
©
O
•
D
=
x
∈
F
∗
q
: Tr(
x
2
) = 0
Ú
D
=
x
∈
F
∗
q
: Tr(
x
2
+
x
) = 0
,
E
A
a
$
-
‚
5
è
.2021
c
,Ouyang
<
[17]
ò
±
þ
E
?
1
í
2
,
=
Ä
u
½
Â
8
D
=
x
∈
F
∗
q
: Tr
ax
2
+
bx
= 0
,
DOI:10.12677/pm.2023.1351421390
n
Ø
ê
Æ
4
©
Ÿ
Ù
¥
a
∈
F
∗
q
,
b
∈
F
q
,
E
A
a
‚
5
è
.
É
±
þ
ó
Š
é
u
,
©
U
Y
é
(1)
ª
‚
5
è
?
1ï
Ä
,
À
½
Â
8
•
D
=
x
∈
F
∗
q
: Tr
ax
2
+
bx
=
γ
,
(2)
Ù
¥
a
∈
F
∗
q
,
b
∈
F
q
…
γ
∈
F
∗
p
,
E
A
a
#
ë
ê
p
‚
5
è
¿
(
½
è
ë
ê
9
-
þ
©
Ù
.
Ï
L
Aschikhmin-Barg
^
‡
`
²
©
E
‚
5
è
´
4
‚
5
è
,
Œ
±
^
5
O
ä
k
û
Ð
–
¯
(
“
—
•
•
Y
.
w
,
,
(2)
ª
¥
(
a,b,c
) =(1
,
0
,
0)
…
γ
= 0
ž
,
¤
(
J
=
•
Ding
<
(
Ø
;
(2)
ª
¥
(
a,b,c
)=(1
,
1
,
0)
…
γ
= 0
ž
,
¤
(
J
=
•
Li
<
(
Ø
;
(2)
ª
¥
γ
=0
ž
,
¤
(
J
=
•
Ouyang
<
(
Ø
.
©
|
„
(
X
e
,
1
Ü
©
0
˜
ý
•
£
;
1
n
Ü
©
ï
Ä
m
•
Û
ê
Ú
m
•
ó
ê
ü
«
œ
/
e
è
C
D
ë
ê
9
-
þ
©
Ù
;
1
o
Ü
©
o
(
©
.
2.
Ä
:
•
£
Ä
k
0
k
•
•
¥
˜
Ä
:
•
£
.
é
?
¿
a
∈
F
q
,
F
q
þ
\
{
A
[18]
½
Â
•
χ
a
(
x
) =
ζ
Tr(
ax
)
p
,
Ù
¥
x
∈
F
q
,ζ
p
=
e
2
π
√
−
1
/p
•
F
q
˜
‡
p
g
ü
Š
.
e
a
= 1
,
¡
χ
1
•
F
q
\
{
Ì
A
.
\
{
A
÷
v
5
[18]
X
x
∈
F
q
χ
1
(
ax
) =
X
x
∈
F
q
ζ
Tr(
ax
)
p
=
(
q,a
= 0
,
0
,a
∈
F
∗
q
.
(3)
-
ξ
•
F
∗
q
˜
‡
)
¤
,
é
?
¿
0
≤
j
≤
q
−
2
,
F
q
þ
¦
{
A
[18]
½
Â
•
ψ
j
ξ
k
=
e
2
π
√
−
1
jk/
(
q
−
1)
,k
= 0
,
1
,...,q
−
2
.
k
•
•
þ
?
Û
˜
‡
¦
{
A
ψ
þ
Œ
±
^
d
/
ª
L
«
.
e
j
=(
q
−
1)
/
2,
K
ψ
(
q
−
1)
/
2
¡
•
F
q
g
¦
{
A
,
P
•
η
.
©
¥
^
η
Ú
¯
η
©
OL
«
F
q
Ú
F
p
þ
g
¦
{
A
,
K
?
¿
x
∈
F
∗
p
:
e
m
•
ó
ê
,
K
η
(
x
)=1;
e
m
•
Û
ê
,
K
η
(
x
)=¯
η
(
x
).
ù
‡
5
Ÿ
š
~
-
‡
,
©
´
Ï
•
T
5
Ÿ
¤
±
â
©
m
•
Û
ê
Ú
m
•
ó
ê
ü
«
œ
/
©
m
?
Ø
.
F
q
þ
g
A
p
d
Ú
½
Â
•
G
(
η
)=
P
x
∈
F
∗
q
η
(
x
)
χ
(
x
),
Ù
¥
η
Ú
χ
©
O
•
F
q
þ
g
¦
{
Ú
\
{
A
.
'
u
g
p
d
Ú
,
k
X
e
ü
‡
-
‡
(
Ø
.
Ú
n
1.
[18]
F
q
•
¹
k
q
‡
ƒ
k
•
•
.
K
G
m
=
P
x
∈
F
∗
p
m
η
(
x
)
χ
(
x
) = (
−
1)
m
−
1
√
−
1
(
p
−
1)
2
m
4
√
p
m
.
d
Ú
n
1,
w
,
k
G
1
= (
−
1)
p
−
1
4
p
1
2
.
K
G
m
+1
=
G
m
G
1
= (
−
1)
(
p
−
1)(
m
+1)
4
p
m
+1
2
…
G
m
+2
=
G
m
G
2
1
= (
−
1)
m
−
1
(
−
1)
(
p
−
1)
2
(
m
+1)
4
p
m
+2
2
.
DOI:10.12677/pm.2023.1351421391
n
Ø
ê
Æ
4
©
Ÿ
Ú
n
2.
[18]
e
f
(
x
) =
a
2
x
2
+
a
1
x
+
a
0
∈
F
q
[
x
]
…
a
2
6
= 0.
K
X
x
∈
F
q
ζ
Tr(
f
(
x
))
p
=
ζ
Tr
(
a
0
−
a
2
1
(4
a
2
)
−
1
)
p
η
(
a
2
)
G
(
η,χ
)
.
e
¡
0
4
è
ƒ
'
•
£
.
‚
5
è
C
¥
è
i
c
= (
c
1
,c
2
,...,c
n
)
|
½
Â
•
Suppt(
c
) =
{
1
≤
i
≤
n
:
c
i
6
= 0
}
.
e
é
?
¿
ü
‡
è
i
u
,
v
∈
C,
k
Suppt(
v
)
⊆
Suppt(
u
),
K
¡
u
CX
v
.
e
è
C
˜
‡
š
"è
i
c
•
C X
§
X
þ
ê
,
K
¡
c
´
˜
‡
4
è
i
.
e
‚
5
è
C
¥
¤
k
è
i
þ
´
4
è
i
,
K
¡
‚
5
è
C
´
4
‚
5
è
[19].
'
u
4
è
½
,
k
X
e
¿
©
^
‡
.
Ú
n
3.
[20](Aschikhmin-Barg
^
‡
)
e
F
p
þ
‚
5
è
C
•
Œ
Ç
²
-
þ
w
max
Ú
•
Ç
²
-
þ
w
min
÷
v
w
min
w
max
>
p
−
1
p
,
K
è
C
´
4
è
.
•
•
B
,
e
©
¥
P
M
= Tr(
b
2
a
)
,ω
=
−
γ
.
3.
Ì
‡
(
Ø
9
y
²
3.1.
m
•
Û
êž
è
C
D
ë
ê
9
Ù
-
þ
©
Ù
!
?
Ø
m
•
Û
êž
,
Ä
u
(2)
ª
E
(1)
ª
‚
5
è
C
D
è
•
,
‘
ê
±
9
-
þ
©
Ù
.
Ä
k
O
Ž
è
•
.
Ú
n
4.
C
D
è
•
•
n,
K
n
=
(
p
m
−
1
,ω
−
M
4
= 0
,
p
m
−
1
+
1
p
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
,ω
−
M
4
6
= 0
.
y
²
d
(3)
ª
Œ
n
=
1
p
X
x
∈
F
∗
q
X
y
∈
F
p
ζ
y
(Tr(
ax
2
+
bx
)+
ω
)
p
=
1
p
X
x
∈
F
q
X
y
∈
F
p
ζ
y
(Tr(
ax
2
+
bx
)+
ω
)
p
−
1
p
X
y
∈
F
p
ζ
ωy
p
=
1
p
X
x
∈
F
q
1+
X
y
∈
F
∗
p
ζ
y
(Tr(
ax
2
+
bx
)+
ω
)
p
DOI:10.12677/pm.2023.1351421392
n
Ø
ê
Æ
4
©
Ÿ
=
p
m
−
1
+
1
p
G
m
η
(
a
)
X
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
)
=
p
m
−
1
,ω
−
M
4
= 0
,
p
m
−
1
+
1
p
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
,ω
−
M
4
6
= 0
.
(4)
e
¡
m
©
(
½
‚
5
è
C
D
¥
š
"è
i
Ç
²
-
þ
.
^
]A
L
«
8
Ü
A
¥
ƒ
‡
ê
.
N
ρ
(
a,b
) =
]
x
∈
F
∗
p
m
|
Tr
ax
2
+
bx
+
ω
= 0
,
Tr(
ρx
) = 0
.
K
è
i
c
ρ
∈
C
D
ρ
∈
F
∗
q
Ç
²
-
þ
Œ
±
L
«
•
wt(
c
ρ
) =
n
−
N
ρ
(
a,b
)
,
(5)
Ù
¥
n
•
è
C
D
è
•
.
w
,
N
ρ
(
a,b
) =
1
p
2
X
x
∈
F
∗
q
X
y
∈
F
p
ζ
y
(Tr(
ax
2
+
bx
)+
ω
)
p
X
z
∈
F
p
ζ
z
Tr(
ρx
)
p
=
1
p
2
X
x
∈
F
q
1+
X
y
∈
F
∗
p
ζ
y
(Tr(
ax
2
+
bx
)+
ω
)
p
1+
X
z
∈
F
∗
p
ζ
z
Tr(
ρx
)
p
−
1
p
X
y
∈
F
p
ζ
ωy
p
=
p
m
−
2
+
1
p
2
Ω
1
+Ω
2
+
X
x
∈
F
q
X
z
∈
F
∗
p
ζ
z
Tr(
ρx
)
p
=
p
m
−
2
+
1
p
2
Ω
1
+Ω
2
,
(6)
Ù
¥
Ω
1
=
X
x
∈
F
q
X
y
∈
F
∗
p
ζ
y
(Tr
(
ax
2
+
bx
)
+
ω
)
p
=
0
,ω
−
M
4
6
= 0
,
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
,ω
−
M
4
= 0
.
(7)
Ω
2
=
X
y
∈
F
∗
p
X
z
∈
F
∗
p
X
x
∈
F
q
ζ
Tr
(
ayx
2
+(
by
+
zρ
)
x
)
+
ωy
p
.
e
¡
O
Ž
Ω
2
Š
"
Ú
n
5.
Ω
2
=
P
y
∈
F
∗
p
P
z
∈
F
∗
p
P
x
∈
F
q
ζ
Tr
(
ayx
2
+(
by
+
zρ
)
x
)
+
ωy
p
.
DOI:10.12677/pm.2023.1351421393
n
Ø
ê
Æ
4
©
Ÿ
(1)
e
ω
−
M
4
= 0,
K
Ω
2
=
0
,
Tr
ρ
2
a
= 0
,
(
p
−
1)
G
m
+1
η
(
a
)¯
η
−
Tr
ρ
2
a
,
Tr
ρ
2
a
6
= 0
…
Tr
bρ
a
= 0
,
−
G
m
+1
η
(
a
)¯
η
−
Tr
ρ
2
a
,
Tr
ρ
2
a
·
Tr
bρ
a
6
= 0
.
(2)
e
ω
−
M
4
6
= 0,
K
Ω
2
=
(
p
−
1)
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
,
Tr
ρ
2
a
= Tr
bρ
a
= 0
,
−
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
,
Tr
ρ
2
a
= 0
…
Tr
bρ
a
6
= 0
,
−
G
m
+1
η
(
a
)
¯
η
−
Tr
ρ
2
a
+ ¯
η
(
ω
−
M
4
)
,
Tr
ρ
2
a
6
= 0
…
Tr
bρ
a
= 0
½
ö
Tr
ρ
2
a
·
Tr
bρ
a
6
= 0
…
4
ω
Tr(
ρ
2
a
)
+Tr
2
bp
a
6
=
M
Tr
ρ
2
a
,
G
m
+1
η
(
a
)
(
p
−
1)¯
η
−
Tr
ρ
2
a
−
¯
η
(
ω
−
M
4
)
,
Tr
ρ
2
a
·
Tr
bρ
a
6
= 0
…
4
ω
Tr(
ρ
2
a
)
+Tr
2
bp
a
=
M
Tr
ρ
2
a
.
y
²
Ω
2
=
X
y
∈
F
∗
p
X
z
∈
F
∗
p
X
x
∈
F
q
ζ
Tr
(
ayx
2
+(
by
+
zρ
)
x
)
+
ωy
p
=
X
y
∈
F
∗
p
X
z
∈
F
∗
p
G
m
η
(
ay
)
ζ
Tr(
−
(
by
+
zρ
)
2
4
ay
)+
ωy
p
=
G
m
η
(
a
)
X
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
)
X
z
∈
F
∗
p
ζ
−
Tr
ρ
2
a
z
2
4
y
−
Tr
(
bρ
a
)
z
2
p
.
•y
²
ω
−
M
4
6
= 0
œ
/
,
ω
−
M
4
= 0
y
²
•{
a
q
.
e
¡
©
o
«
œ
/
O
Ω
2
.
œ
/
1:Tr
ρ
2
a
= 0
…
Tr
bρ
a
= 0.
K
Ω
2
= (
p
−
1)
G
m
η
(
a
)
X
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
) = (
p
−
1)
G
m
η
(
a
)
X
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
ω
−
M
4
y
¯
η
ω
−
M
4
= (
p
−
1)
G
m
+1
η
(
a
)¯
η
ω
−
M
4
.
œ
/
2:Tr
ρ
2
a
= 0
…
Tr
bρ
a
6
= 0
.
K
Ω
2
=
G
m
η
(
a
)
X
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
)
X
z
∈
F
∗
p
ζ
−
T
(
bp
a
)
z
2
p
=
−
G
m
η
(
a
)
X
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
)
=
−
G
m
+1
η
(
a
)¯
η
ω
−
M
4
.
DOI:10.12677/pm.2023.1351421394
n
Ø
ê
Æ
4
©
Ÿ
œ
/
3:Tr
ρ
2
a
6
= 0
…
Tr
bρ
a
.
= 0
.
K
Ω
2
=
G
m
η
(
a
)
P
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
)
P
z
∈
F
∗
p
ζ
−
Tr
ρ
2
a
z
2
4
y
p
=
G
m
η
(
a
)
X
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
)
X
z
∈
F
p
ζ
−
Tr
ρ
2
a
z
2
4
y
p
−
G
m
η
(
a
)
X
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
)
.
d
Ú
n
2
Œ
Ω
2
=
G
m
+1
η
(
a
)¯
η
−
Tr
ρ
2
a
P
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
−
G
m
η
(
a
)
P
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
)
=
−
G
m
+1
η
(
a
)
¯
η
−
Tr
ρ
2
a
+ ¯
η
(
ω
−
M
4
)
.
œ
/
4:Tr
ρ
2
a
6
= 0
…
Tr
bρ
a
6
= 0.
K
Ω
2
=
G
m
η
(
a
)
X
y
∈
F
∗
p
ζ
(
ω
−
M
4
)
y
p
¯
η
(
y
)
X
z
∈
F
p
ζ
−
Tr
ρ
2
a
z
2
4
y
−
Tr
(
bp
a
)
z
2
p
−
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
.
d
Ú
n
2
Œ
Ω
2
=
G
m
+1
η
(
a
)
X
y
∈
F
∗
p
ζ
4Tr(
ρ
2
a
)
ω
+Tr
2
(
bp
a
)
−
M
Tr
ρ
2
a
y
4Tr
ρ
2
a
p
¯
η
−
Tr
ρ
2
a
−
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
.
e
4Tr(
ρ
2
a
)
ω
+Tr
2
bp
a
=
M
Tr
ρ
2
a
,
K
Ω
2
=
G
m
+1
η
(
a
)
(
p
−
1)¯
η
−
Tr
ρ
2
a
−
¯
η
(
ω
−
M
4
)
.
e
4Tr(
ρ
2
a
)
ω
+Tr
2
bp
a
6
=
M
Tr
ρ
2
a
,
K
Ω
2
=
−
G
m
+1
η
(
a
)¯
η
−
Tr
ρ
2
a
−
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
=
−
G
m
+1
η
(
a
)
¯
η
(
ω
−
M
4
)+ ¯
η
−
Tr
ρ
2
a
.
5
¿
?
¿
ρ
∈
F
∗
p
m
,wt
(
c
ρ
)
6
= 0,
K
C
D
‘
ê
•
m
.
n
Ü
±
þ
(
J
Œ
X
e
(
Ø
.
·
K
1.
m
•
Û
ê
,
½
Â
8
•
(2)
ª
.
K
(1)
ª
½
Â
‚
5
è
C
D
è
•
•
n
,
‘
ê
•
m
.
š
"è
i
Ç
²
-
þ
•
wt(
c
ρ
) = (
p
−
1)
p
m
−
2
+
N.
(1)
e
ω
−
M
4
= 0,
K
n
=
p
m
−
1
.
…
DOI:10.12677/pm.2023.1351421395
n
Ø
ê
Æ
4
©
Ÿ
N
=
0
,
Tr
ρ
2
a
= 0
,
−
p
−
1
p
2
G
m
+1
η
(
a
)
,
Tr
bρ
a
= 0
…
¯
η
Tr
ρ
2
a
=
−
1
,
p
−
1
p
2
G
m
+1
η
(
a
)
,
Tr
bρ
a
= 0
…
¯
η
Tr
ρ
2
a
= 1
,
1
p
2
G
m
+1
η
(
a
)
,
Tr
bρ
a
6
= 0
…
¯
η
Tr
ρ
2
a
=
−
1
,
−
1
p
2
G
m
+1
η
(
a
)
,
Tr
bρ
a
6
= 0
…
¯
η
Tr
ρ
2
a
= 1
.
(2)
e
ω
−
M
4
6
= 0,
K
n
=
p
m
−
1
+
1
p
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
).
…
N
=
0
,
Tr
ρ
2
a
= Tr
bρ
a
= 0
,
1
p
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
,
Tr
ρ
2
a
= 0
…
Tr
bρ
a
6
= 0
,
1
p
2
G
m
+1
η
(
a
)(
p
¯
η
ω
−
M
4
)+1
,
Tr
ρ
2
a
6
= 0
,
Tr
bρ
a
= 0
…
¯
η
Tr
ρ
2
a
=
−
1
½
ö
Tr
ρ
2
a
6
= 0
,
Tr
bρ
a
6
= 0
,
4Tr(
ρ
2
a
)
ω
+Tr
2
bp
a
6
=
M
Tr
ρ
2
a
…
¯
η
Tr
ρ
2
a
=
−
1
,
1
p
2
G
m
+1
η
(
a
)(
p
¯
η
(
ω
−
M
4
)
−
1)
,
Tr
ρ
2
a
6
= 0
,
Tr
bρ
a
= 0
…
¯
η
Tr
ρ
2
a
= 1
½
ö
Tr
ρ
2
a
6
= 0
,
Tr
bρ
a
6
= 0
,
4Tr(
ρ
2
a
)
ω
+Tr
2
bp
a
6
=
M
Tr
ρ
2
a
…
¯
η
Tr
ρ
2
a
= 1
,
1
p
2
G
m
+1
η
(
a
)¯
η
(
ω
−
M
4
)
,
Tr
ρ
2
a
6
= 0
,
Tr
bρ
a
6
= 0
…
4Tr(
ρ
2
a
)
ω
+Tr
2
bp
a
=
M
Tr
ρ
2
a
.
y
²
d
(4),(5)
Ú
(6)
ª
Œ
wt(
c
ρ
) =
p
m
−
1
+
1
p
Ω
1
−
p
m
−
2
+
1
p
2
(Ω
1
+Ω
2
)
= (
p
−
1)
p
m
−
2
+
p
−
1
p
2
Ω
1
−
1
p
2
Ω
2
,
K
N
=
p
−
1
p
2
Ω
1
−
1
p
2
Ω
2
.
2
(
Ü
(7)
ª
Ú
Ú
n
5
w
,
Œ
(
Ø
.
5
P
1.
é
u
·
K
1(1)
¥
è
C
D
,
m
≥
5
ž
:
e
G
m
+1
η
(
a
) = (
−
1)
(
p
−
1)(
m
+1)
4
p
m
+1
2
η
(
a
) =
±
p
m
+1
2
,
K
w
min
w
max
=
(
p
−
1)(
p
m
−
2
−
p
m
−
3
2
)
(
p
−
1)(
p
m
−
2
+
p
m
−
3
2
)
>
p
−
1
p
.
é
u
·
K
1(2)
¥
è
C
D
,
m
≥
5
ž
:
e
G
m
η
(
a
) = (
−
1)
m
−
1
√
−
1
(
p
−
1)
2
m
4
√
p
m
η
(
a
)
·
¯
η
(
ω
−
M
4
) =
p
m
2
,
K
w
min
w
max
=
(
p
−
1)
p
m
−
2
(
p
−
1)
p
m
−
2
+(
p
+1)
p
m
−
4
2
>
p
−
1
p
.
DOI:10.12677/pm.2023.1351421396
n
Ø
ê
Æ
4
©
Ÿ
e
G
m
η
(
a
) = (
−
1)
m
−
1
√
−
1
(
p
−
1)
2
m
4
√
p
m
η
(
a
)
·
¯
η
(
ω
−
M
4
) =
−
p
m
2
,
K
w
min
w
max
=
(
p
−
1)
p
m
−
2
−
(
p
+1)
p
m
−
4
2
(
p
−
1)
p
m
−
2
>
p
−
1
p
.
d
Ú
n
3
Œ
•
,
!
E
‚
5
è
3
õ
ê
œ
¹
e
´
4
è
.
e
¡
m
©
O
Ž
-
þ
©
Ù
.
Ä
k
,
‰
Ñ
ü
‡
O
Ž
ª
Ç
I
‡
Ú
n
,
Ù
¥
m
þ
•
Û
ê
.
Ú
n
6.
[17]
t
∈
F
p
.
e
N
(
t
) =
]
n
x
∈
F
p
m
|
Tr
x
2
a
=
t
o
.
K
N
(
t
) =
(
p
m
−
1
,t
= 0
,
p
m
−
1
+
1
p
G
m
+1
η
(
a
)¯
η
(
−
t
)
,t
6
= 0
.
Ú
n
7.
[17]
t
∈
F
p
,
…
a,b
∈
F
∗
p
m
.
K
N
(
t,
0) =
]
n
x
∈
F
p
m
|
Tr
x
2
a
=
t,
Tr
bx
a
= 0
o
.
e
t
= 0
,
K
N
(0
,
0) =
(
p
m
−
2
,p
|
M,
p
m
−
2
+
p
−
1
p
2
G
m
+1
η
(
a
)¯
η
(
−
M
)
,p
-
M.
e
t
6
= 0
,
K
N
(
t,
0) =
(
p
m
−
2
+
1
p
G
m
+1
η
(
a
)¯
η
(
−
t
)
,p
|
M,
p
m
−
2
−
1
p
2
G
m
+1
η
(
a
)¯
η
(
−
M
)
,p
-
M.
±
þ
(
J
ƒ
,
K
k
e
¡
(
Ø
.
½
n
1.
p
•
Û
ƒ
ê
,
m
•
Û
ê
,
½
Â
8
X
(2)
ª
¤
«
…
ω
−
M
4
= 0.
K
(1)
ª
½
Â
è
C
D
•
[
p
m
−
1
,m
]
‚
5
è
,
Ù
-
þ
©
Ù
X
L
1
¤
«
.
Table1.
Theweightdistributionofcode
C
D
inTheorem1
L
1.
½
n
1
¥
è
C
D
-
þ
©
Ù
-
þ
ª
ê
01
(
p
−
1)
p
m
−
2
A
ω
1
(
p
−
1)
p
m
−
2
+
1
p
2
G
m
+1
η
(
a
)
A
ω
2
(
p
−
1)
p
m
−
2
−
1
p
2
G
m
+1
η
(
a
)
A
ω
3
(
p
−
1)
p
m
−
2
+
1
p
2
G
m
+1
η
(
a
)
A
ω
4
(
p
−
1)
p
m
−
2
−
1
p
2
G
m
+1
η
(
a
)
A
ω
5
Ù
¥
,
A
ω
1
=
p
m
−
1
−
1
.
DOI:10.12677/pm.2023.1351421397
n
Ø
ê
Æ
4
©
Ÿ
e
¯
η
(
−
M
) =
−
1
,
K
A
ω
2
=
A
ω
3
=
1
2
(
p
−
1)(
p
m
−
2
+
1
p
2
G
m
+1
η
(
a
)).
A
ω
4
=
1
2
1
p
2
G
m
+1
η
(
a
)
((1
−
p
)
G
2
m
+1
η
2
(
a
)+(
p
m
+
p
m
+2
−
2
p
m
+1
)
G
m
+1
η
(
a
)+(
p
m
+3
−
p
m
+2
))
,
A
ω
5
=
1
2
1
p
2
G
m
+1
η
(
a
)
((1
−
p
)
G
2
m
+1
η
2
(
a
)+(
p
m
+
p
m
+2
−
2
p
m
+1
)
G
m
+1
η
(
a
)+(
p
m
+2
−
p
m
+3
))
.
e
¯
η
(
−
M
) = 1
,
K
A
ω
2
=
A
ω
3
=
1
2
(
p
−
1)(
p
m
−
2
−
1
p
2
G
m
+1
η
(
a
)).
A
ω
4
=
1
2
1
p
2
G
m
+1
η
(
a
)
((
p
−
1)
G
2
m
+1
η
2
(
a
)+(
p
m
+
p
m
+2
−
2
p
m
+1
)
G
m
+1
η
(
a
)+(
p
m
+3
−
p
m
+2
))
,
A
ω
5
=
1
2
1
p
2
G
m
+1
η
(
a
)
((
p
−
1)
G
2
m
+1
η
2
(
a
)+(
p
m
+
p
m
+2
−
2
p
m
+1
)
G
m
+1
η
(
a
)+(
p
m
+2
−
p
m
+3
))
.
y
²
d
·
K
1(1)
Œ
•
,
C
D
¥
š
"è
i
Ç
²
-
þ
•
L
1
¥
1
1
¤
«
.
ò
L
1
¥
1
1
Š
l
þ
–
e
•
g
P
•
w
1
,w
2
,w
3
,w
4
,w
5
,
K
é
A
ª
ê
P
•
A
w
1
,A
w
2
,A
w
3
,A
w
4
,A
w
5
.
d
·
K
1
Ú
Ú
n
6
Œ
A
w
1
=
N
(0)
−
1 =
p
m
−
1
−
1
.
Ï
•
ω
−
M
4
= 0,
¤
±
M
6
= 0,
=
p
-
M.
d
·
K
1
Ú
Ú
n
7
Œ
A
ω
2
=
A
ω
3
=
1
2
(
p
−
1)(
p
m
−
2
−
1
p
2
G
m
+1
η
(
a
)¯
η
(
−
M
)).
d
Pless
˜
Ý
ú
ª
[19]
Œ
(
A
w
1
+
A
w
2
+
A
w
3
+
A
w
4
+
A
w
5
=
p
m
−
1
,
w
1
A
w
1
+
w
2
A
w
2
+
w
3
A
w
3
+
w
4
A
w
5
+
w
5
A
w
5
= (
p
−
1)
np
m
−
1
.
(8)
Ï
d
,
e
¯
η
(
−
M
)) =
−
1
,
K
A
ω
2
=
A
ω
3
=
1
2
(
p
−
1)(
p
m
−
2
+
1
p
2
G
m
+1
η
(
a
)).
2
(
Ü
(8)
ª
Œ
A
ω
4
=
1
2
1
p
2
G
m
+1
η
(
a
)
((1
−
p
)
G
2
m
+1
η
2
(
a
)+(
p
m
+
p
m
+2
−
2
p
m
−
1
)
G
m
+1
η
(
a
)+(
p
m
+3
−
p
m
+2
))
,
A
ω
5
=
1
2
1
p
2
G
m
+1
η
(
a
)
((1
−
p
)
G
2
m
+1
η
2
(
a
)+(
p
m
+
p
m
+2
−
2
p
m
−
1
)
G
m
+1
η
(
a
)+(
p
m
+2
−
p
m
+3
))
.
e
¯
η
(
−
M
) = 1
,
K
A
ω
2
=
A
ω
3
=
1
2
(
p
−
1)(
p
m
−
2
−
1
p
2
G
m
+1
η
(
a
)).
2
(
Ü
(8)
ª
Œ
A
ω
4
=
1
2
1
p
2
G
m
+1
η
(
a
)
((
p
−
1)
G
2
m
+1
η
2
(
a
)+(
p
m
+
p
m
+2
−
2
p
m
−
1
)
G
m
+1
η
(
a
)+(
p
m
+3
−
p
m
+2
))
,
A
ω
5
=
1
2
1
p
2
G
m
+1
η
(
a
)
((
p
−
1)
G
2
m
+1
η
2
(
a
)+(
p
m
+
p
m
+2
−
2
p
m
−
1
)
G
m
+1
η
(
a
)+(
p
m
+2
−
p
m
+3
))
.
Ï
d
è
C
D
-
þ
©
Ù
.
e
¡
~
f
Œ
d
Magma
§
S
y
.
~
1.
½
Â
8
X
(2)
ª
¤
«
,
…
p
= 5
,m
= 3
,a
= 2
,b
= 4
,ω
= Tr(2).
K
C
D
•
[25
,
3]
‚
5
DOI:10.12677/pm.2023.1351421398
n
Ø
ê
Æ
4
©
Ÿ
è
,
Ù
-
þ
O
ê
ì
•
1+24
z
20
+12
z
24
+12
z
16
+48
z
21
+28
z
19
,
†
½
n
1
(
Ø
˜
—
.
~
2.
½
Â
8
X
(2)
ª
¤
«
,
…
p
= 7
,m
= 5
,a
=1
,b
=2
,ω
= Tr(1).
K
C
D
•
[2401
,
5]
‚
5
è
,
Ù
-
þ
O
ê
ì
•
1+2400
z
2058
+1050
z
2016
+1050
z
2100
+6006
z
2051
+6300
z
2065
,
†
½
n
1
(
Ø
˜
—
.
3.2.
m
•
ó
êž
è
C
D
ë
ê
9
Ù
-
þ
©
Ù
!
?
Ø
m
•
ó
êž
,
Ä
u
(2)
ª
E
(1)
ª
‚
5
è
C
D
è
•
,
‘
ê
±
9
-
þ
©
Ù
.
du
y
²
•{
Ú
m
•
Û
ê
œ
/
a
q
,
¤
±
Ø
2
K
ã
.
Ú
n
8.
C
D
è
•
•
n,
K
n
=
(
p
m
−
1
+
p
−
1
p
G
m
η
(
a
)
,ω
−
M
4
= 0
,
p
m
−
1
−
1
p
G
m
η
(
a
)
,ω
−
M
4
6
= 0
.
·
K
2.
m
•
ó
ê
,
½
Â
8
•
(2)
ª
.
K
(1)
ª
½
Â
‚
5
è
C
D
è
•
•
n
,
‘
ê
•
m
.
š
"è
i
Ç
²
-
þ
•
wt(
c
ρ
) = (
p
−
1)
p
m
−
2
+
N.
(1)
e
ω
−
M
4
= 0,
K
n
=
p
m
−
1
+
p
−
1
p
G
m
η
(
a
).
…
N
=
0
,
Tr
ρ
2
a
= Tr(
bρ
a
) = 0
,
p
−
1
p
G
m
η
(
a
)
,
Tr
ρ
2
a
·
Tr(
bρ
a
) = 0
…
Tr
bρ
a
6
= Tr
ρ
2
a
,
p
−
2
p
G
m
η
(
a
)
,
Tr
ρ
2
a
·
Tr(
bρ
a
)
6
= 0
.
(1)
e
ω
−
M
4
6
= 0,
K
n
=
p
m
−
1
−
1
p
G
m
η
(
a
)).
…
N
=
0
,
(Tr
ρ
2
a
= Tr
bρ
a
= 0)
½
ö
(Tr
ρ
2
a
6
= 0
,
Tr
bρ
a
= 0
…
¯
η
(
−
(
ω
−
M
4
)Tr
ρ
2
a
) =
−
1))
½
ö
(Tr
ρ
2
a
·
Tr
bρ
a
6
= 0
,
4Tr(
ρ
2
a
)
ω
+Tr
2
bp
a
6
=
M
Tr
ρ
2
a
…
¯
η
(4
ω
Tr
ρ
2
a
+Tr
2
bρ
a
−
M
Tr
ρ
2
a
) =
−
1)
,
−
1
p
G
m
η
(
a
)
,
(Tr
ρ
2
a
= 0
,
Tr
bρ
a
6
= 0)
½
ö
(Tr
ρ
2
a
·
Tr
bρ
a
6
= 0
…
4Tr(
ρ
2
a
)
ω
+Tr
2
bp
a
=
M
Tr
ρ
2
a
)
,
−
2
p
G
m
η
(
a
)
,
(Tr
ρ
2
a
6
= 0
,
Tr
bρ
a
= 0
,
¯
η
(
−
(
ω
−
M
4
)Tr
ρ
2
a
) = 1))
½
ö
(Tr
ρ
2
a
·
Tr
bρ
a
6
= 0
,
4
ω
Tr(
ρ
2
a
)+Tr
2
bp
a
6
=
M
Tr
ρ
2
a
,
¯
η
4
ω
Tr
ρ
2
a
+Tr
2
bρ
a
−
M
Tr
ρ
2
a
= 1)
.
5
P
2.
é
u
·
K
2
ü
«
œ
/
e
è
C
D
,
m
≥
6
ž
,
C
D
´
4
‚
5
è
.
y
²
•{
†
5
P
1
˜
,
ù
p
2
Ø
K
ã
.
DOI:10.12677/pm.2023.1351421399
n
Ø
ê
Æ
4
©
Ÿ
e
¡
‰
Ñ
O
Ž
ª
Ç
©
Ù
I
‡
ü
‡
Ú
n
,
Ù
¥
m
þ
•
ó
ê
.
Ú
n
9.
[17]
t
∈
F
p
,
e
N
(
t
) =
]
n
x
∈
F
p
m
|
Tr
x
2
a
=
t
o
.
K
N
(
t
) =
(
p
m
−
1
+
p
−
1
p
G
m
η
(
a
)
,t
= 0
,
p
m
−
1
−
1
p
G
m
η
(
a
)
,t
6
= 0
.
Ú
n
10.
[17]
t
∈
F
p
,
…
a,b
∈
F
∗
p
m
.N
(0
,t
) =
]
n
x
∈
F
p
m
|
Tr
x
2
a
= 0
,
Tr
bx
a
=
t
o
.
e
t
= 0
,
K
N
(0
,
0) =
(
p
m
−
2
+
p
−
1
p
G
m
η
(
a
)
,p
|
M,
p
m
−
2
,p
-
M.
e
t
6
= 0
,
K
N
(
t,
0) =
(
p
m
−
2
,p
|
M,
p
m
−
2
+
1
p
G
m
η
(
a
)
,p
-
M.
n
Ü
±
þ
(
J
w
,
Œ
X
e
½
n
.
½
n
2.
p
•
Û
ƒ
ê
,
m
•
ó
ê
,
½
Â
8
X
(2)
ª
¤
«
…
ω
−
M
4
= 0.
K
(1)
ª
½
Â
è
C
D
•
h
p
m
−
1
+
p
−
1
p
G
m
η
(
a
)
,m
i
‚
5
è
,
Ù
-
þ
©
Ù
X
L
2
¤
«
.
Table2.
Theweightdistributionofcode
C
D
inTheorem2
L
2.
½
n
2
¥
è
C
D
-
þ
©
Ù
-
þ
ª
ê
01
(
p
−
1)
p
m
−
2
p
m
−
2
−
1
(
p
−
1)
p
m
−
2
+
p
−
1
p
G
m
η
(
a
)2(
p
m
−
1
−
p
m
−
2
)+
1
G
m
η
(
a
)
(
p
m
−
p
m
−
1
)
(
p
−
1)
p
m
−
2
+
p
−
2
p
G
m
η
(
a
)(
p
m
+
p
m
−
2
−
2
p
m
−
1
)
−
1
G
m
η
(
a
)
(
p
m
−
p
m
−
1
)
5
P
3.
d
L
2
w
,
Œ
,
m
=2
ž
,
-
þ
•
(
p
−
1)
p
m
−
2
è
i
Ñ
y
g
ê
•
p
m
−
2
−
1= 0
g
.
d
ž
C
D
•
-
‚
5
è
.
e
¡
~
f
Œ
d
Magma
§
S
y
.
~
3.
½
Â
8
X
(2)
ª
¤
«
,
…
p
=5
,m
= 4
,a
=1
,b
= 2
,ω
=Tr(1).
K
C
D
•
[105
,
4]
‚
5
è
,
Ù
-
þ
O
ê
ì
•
1+24
z
100
+180
z
80
+420
z
85
,
†
½
n
2
(
Ø
˜
—
.
~
4.
½
Â
8
X
(2)
ª
¤
«
,
…
p
= 7
,m
= 2
,a
= 2
,b
= 4
,ω
= Tr(2).
K
C
D
•
[13
,
2]
‚
5
è
,
Ù
-
þ
O
ê
ì
•
1+18
z
12
+30
z
11
,
†
½
n
2
(
Ø
˜
—
.
4.
o
(
©
í
2
©
z
[15–17]
¥
‚
5
è
E
,
Ä
u
(2)
ª
…
©
m
•
Û
ê
Ú
m
•
ó
ê
ü
«
œ
/
é
(1)
ª
‚
5
è
?
1ï
Ä
,
E
A
a
#
ë
ê
p
‚
5
è
.
è
•
Ý
,
‘
ê
±
9
-
þ
©
Ù
ë
ê
†
®
k
DOI:10.12677/pm.2023.1351421400
n
Ø
ê
Æ
4
©
Ÿ
(
J
þ
Ø
Ó
.
¿
^
Magma
§
S
y
(
Ø
(
5
.
•
,
Ï
L
Aschikhmin-Barg
^
‡
`
²
,
©
E
‚
5
è
õ
ê
œ
¹
e
´
4
‚
5
è
,
Œ
±
^
5
O
ä
k
û
Ð
–
¯
(
“—
•
•
Y
.
ω
−
M
4
6
= 0
ž
C
D
ª
Ç
©
Ù
3
‰a
,
Ö
ö
.
ë
•
©
z
[1]See,K.andSong,S.Y.(1998)AssociationSchemesofSmallOrder.
JournalofStatistical
PlanningandInference
,
73
,225-271.https://doi.org/10.1016/S0378-3758(98)00064-0
[2]Yuan, J.andDing,C.(2005)SecretSharingSchemesfromThreeClassesofLinearCodes.
IEEE
TransactionsonInformationTheory
,
52
,206-212.https://doi.org/10.1109/TIT.2005.860412
[3]Calderbank,R.andKantor,W.M.(1986)TheGeometryofTwo-WeightCodes.
Bulletinof
theLondonMathematicalSociety
,
18
,97-122.https://doi.org/10.1112/blms/18.2.97
[4]Baumert,L.D.andMcEliece,R.J.(1972)WeightsofIrreducibleCyclicCodes.
Information
andControl
,
20
,158-175.https://doi.org/10.1016/S0019-9958(72)90354-3
[5]Ding,C.andNiederreiter,H.(2007)Cyclotomic LinearCodesofOrder3.
IEEETransactions
onInformationTheory
,
53
,2274-2277.https://doi.org/10.1109/TIT.2007.896886
[6]Tang,C.,Qi,Y.andHuang,D.(2015)Two-WeightandThree-WeightLinearCodesfrom
SquareFunctions.
IEEECommunicationsLetters
,
20
,29-32.
https://doi.org/10.1109/LCOMM.2015.2497344
[7]Yang,S.andYao,Z.A.(2017)CompleteWeightEnumeratorsofaFamilyofThree-Weight
LinearCodes.
Designs,CodesandCryptography
,
82
,663-674.
https://doi.org/10.1007/s10623-016-0191-x
[8]Heng, Z.,Ding, C. andZhou,Z. (2018) Minimal LinearCodes overFiniteFields.
FiniteFields
andTheirApplications
,
54
,176-196.https://doi.org/10.1016/j.ffa.2018.08.010
[9]Jian,G.,Lin,Z.andFeng,R.(2019)Two-WeightandThree-WeightLinearCodesBasedon
WeilSums.
FiniteFieldsandTheirApplications
,
57
,92-107.
https://doi.org/10.1016/j.ffa.2019.02.001
[10]Lu,H.andYang,S.(2020)TwoClassesofLinearCodesfromWeilSums.
IEEEAccess
,
8
,
180471-180480.https://doi.org/10.1109/ACCESS.2020.3028141
[11]Li,C.,Yue,Q.andFu,F.W.(2017)AConstructionofSeveralClassesofTwo-Weightand
Three-Weight LinearCodes.
ApplicableAlgebrainEngineering,CommunicationandComput-
ing
,
28
,11-30.https://doi.org/10.1007/s00200-016-0297-4
[12]Hu,Z.,Wang,L.,Li,N.,
etal.
(2021)SeveralClassesofLinearCodeswithFewWeights
from theClosedButterflyStructure.
FiniteFieldsandTheirApplications
,
76
,Article101926.
https://doi.org/10.1016/j.ffa.2021.101926
DOI:10.12677/pm.2023.1351421401
n
Ø
ê
Æ
4
©
Ÿ
[13]Duan,B.,Han,G. andQi,Y. (2022) AClassof Three-Weight Linear Codesover Finite Fields
ofOddCharacteristic.
ApplicableAlgebrainEngineering,CommunicationandComputing
,
1-17.
[14]Zhu,C.andLiao,Q.(2023)TwoNewClassesofProjectiveTwo-WeightLinearCodes.
Finite
FieldsandTheirApplications
,
88
,Article102186.https://doi.org/10.1016/j.ffa.2023.102186
[15]Ding,K.andDing,C.(2015)AClassofTwo-WeightandThree-WeightCodesandTheir
ApplicationsinSecretSharing.
IEEETransactionsonInformationTheory
,
61
,5835-5842.
https://doi.org/10.1109/TIT.2015.2473861
[16]Li,F.,Wang,Q.andLin,D.(2018)AClassofThree-WeightandFive-WeightLinearCodes.
DiscreteAppliedMathematics
,
241
,25-38.https://doi.org/10.1016/j.dam.2016.11.005
[17]Ouyang,J.,Liu,H.andWang,X.(2021)SeveralClassesof
p
-aryLinearCodeswithFew
Weights.
ApplicableAlgebrainEngineering,CommunicationandComputing
.
[18]Lidl,R.andNiederreiter,H.(1997)FiniteFields.CambridgeUniversityPress,Cambridge.
[19]Huffman,W.andPless,V.(2010)FundamentalsofError-CorrectingCodes.CambridgeUni-
versityPress,Cambridge.
[20]Ashikhmin,A.andBarg,A.(1998)MinimalVectorsinLinearCodes.
IEEETransactionson
InformationTheory
,
44
,2010-2017.https://doi.org/10.1109/18.705584
DOI:10.12677/pm.2023.1351421402
n
Ø
ê
Æ