设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(5),1389-1402
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135142
Aap‚5èE
444©©©ŸŸŸ
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2023c421F¶¹^Fϵ2023c523F¶uÙFϵ2023c530F
Á‡
$-‚ 5èÏ3“— ••Y!@yè!(Ü•Y!rKã•¡äk-‡A^§¤±2
•ïÄ"©ÏLÀ#½Â8§EAa#p‚5è§¿|^•êÚnØ(½è
ëêÚ-þ©Ù§•`²©E‚5è3õꜹe´4è§Œ±^5OäkûЖ
¯(“—••Y"
'…c
‚5è§½Â8§•êÚ§-þ©Ù
ConstructionofSeveralClassesofp-Ary
LinearCodes
WenhuiLiu
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.21
st
,2023;accepted:May23
rd
,2023;published:May30
th
,2023
Abstract
Linear codes with a fewweightsare widelystudied dueto theirimportant applications
©ÙÚ^:4©Ÿ.Aap‚5èE[J].nØêÆ,2023,13(5):1389-1402.
DOI:10.12677/pm.2023.135142
4©Ÿ
insecretsharing schemes,authentication codes,associationschemes,stronglyregular
graphs,etc.Inthispaper,severalclassesofp-arylinearcodesareconstructedby
selectinganewdefinitionset,andtheparametersandweightdistributionsofthe
codesaredeterminedbyexponentialsums.Finally,itisshownthatthelinearcodes
constructedinthispaperareminimallinearcodesinmostcases,whichcanbeused
todesignsecretsharingschemesswithgoodaccessstructures.
Keywords
LinearCode,DefiningSet,ExponentialSum,WeightDistribution
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
F
q
•¹kq‡ƒk••,Ù¥q= p
m
,p•Ûƒê…m•ê,F
∗
q
= F
q
\{0}.k•
•F
p
þn‘•þ˜mF
n
p
k‘‚5f˜mC¡•è••n, &E •kp[n,k]‚5è,
èC¥z˜‡•þ¡•èi.-A
i
L«èC¥-þ•ièi‡ê,KèC-þOêì½Â
•1+A
1
z+A
2
z
2
+...+A
n
z
n
, S(1,A
1
,A
2
,...,A
n
) ¡•èC-þ©Ù.e(A
1
,A
2
,...,A
n
)
¥Ø•0A
i
‡ê•t,K¡èC•t-è. ‚5èduäkûÐ“ê(±9´u£ãÚ
\)—A5,¤±3Ï&!êâ•;Ú&ES+•äk-‡A^,AO/,äk$-þ
‚5è3'é•Y[1],“—••Y[2],rKã[3]+•äk-‡¿Â,¤±2•ïÄ.
Baumert[4]31972cÄgJÑ|^½Â8E$-‚5è•{.2007c,Ding[5]m©/
Ï•êÚnØ?˜ÚÏLd•{Eäk$-þ‚5è.ùa‚5èëêЀd½Â8û½,
…éõ®•‚5èþŒÏLd•{ÀT½Â8,ÏdéõÆö}ÁÀØÓ½Â
8?1E,ƒ'(JŒ±ë•©z[6–14],ùóŠÑ4Œ´L‚5èïÄ.
CAc,Ding<[15]ÚLi<[16]ïÄäk±e/ª‚5è
C
D
= {(Tr(αx))
x∈D
|α∈F
q
},(1)
À½Â8©O•D=

x∈F
∗
q
: Tr(x
2
) = 0

ÚD=

x∈F
∗
q
: Tr(x
2
+x) = 0

,EAa$
-‚5è.2021c,Ouyang<[17]ò±þE?1í2,=Äu½Â8
D=

x∈F
∗
q
: Tr

ax
2
+bx

= 0

,
DOI:10.12677/pm.2023.1351421390nØêÆ
4©Ÿ
Ù¥a∈F
∗
q
, b∈F
q
, EAa‚5è. ɱþóŠéu,©UYé(1) ª‚5è?1ïÄ,
À½Â8•
D=

x∈F
∗
q
: Tr

ax
2
+bx

= γ

,(2)
Ù¥a∈F
∗
q
, b∈F
q
…γ∈F
∗
p
, EAa#ëêp‚5è¿(½èëê9-þ©Ù. ÏL
Aschikhmin-Barg ^‡`²©E‚5è´4‚5è, Œ±^5OäkûЖ¯(“
—••Y. w,, (2) ª¥(a,b,c) =(1,0,0) …γ= 0ž,¤(J=•Ding <(Ø; 
(2) ª¥(a,b,c)=(1,1,0) …γ= 0ž, ¤(J=•Li <(Ø; (2) ª¥γ=0 ž, ¤
(J=•Ouyang<(Ø.
©|„(Xe,1Ü©0˜ý•£;1nÜ©ïÄm•ÛêÚm•óêü«œ
/eèC
D
ëê9-þ©Ù;1oÜ©o(©.
2.Ä:•£
Äk0k••¥˜Ä:•£.
é?¿a∈F
q
,F
q
þ\{A[18] ½Â•χ
a
(x) = ζ
Tr(ax)
p
,Ù¥x∈F
q
,ζ
p
= e
2π
√
−1/p
•
F
q
˜‡pgü Š.ea= 1,¡χ
1
•F
q
\{ÌA.\{A÷v5[18]
X
x∈F
q
χ
1
(ax) =
X
x∈F
q
ζ
Tr(ax)
p
=
(
q,a= 0,
0,a∈F
∗
q
.
(3)
-ξ•F
∗
q
˜‡)¤,é?¿0 ≤j≤q−2,F
q
þ¦{A[18]½Â•
ψ
j

ξ
k

= e
2π
√
−1jk/(q−1)
,k= 0,1,...,q−2.
k••þ?Û˜‡¦{AψþŒ±^d/ªL«.ej=(q−1)/2,Kψ
(q−1)/2
¡•F
q

g¦{A,P•η.©¥^ηÚ¯η©OL«F
q
ÚF
p
þg¦{A,K?¿x∈F
∗
p
:em•
óê, Kη(x)=1;em•Ûê, Kη(x)=¯η(x). ù‡5Ÿš~-‡, ©´Ï•T5Ÿ¤±â©
m•ÛêÚm•óêü«œ/©m?Ø. F
q
þgApdڽ•G(η)=
P
x∈F
∗
q
η(x)χ(x),
Ù¥ηÚχ©O•F
q
þg¦{Ú\{A.'ugpdÚ,kXeü‡-‡(Ø.
Ún1.[18]F
q
•¹kq‡ƒk••.K
G
m
=
P
x∈F
∗
p
m
η(x)χ(x) = (−1)
m−1
√
−1
(p−1)
2
m
4
√
p
m
.
dÚn1,w,kG
1
= (−1)
p−1
4
p
1
2
.K
G
m+1
= G
m
G
1
= (−1)
(p−1)(m+1)
4
p
m+1
2
…G
m+2
= G
m
G
2
1
= (−1)
m−1
(−1)
(p−1)
2
(m+1)
4
p
m+2
2
.
DOI:10.12677/pm.2023.1351421391nØêÆ
4©Ÿ
Ún2.[18]ef(x) = a
2
x
2
+a
1
x+a
0
∈F
q
[x]…a
2
6= 0.K
X
x∈F
q
ζ
Tr(f(x))
p
= ζ
Tr
(
a
0
−a
2
1
(4a
2
)
−1
)
p
η(a
2
)G(η,χ).
e¡04èƒ'•£.
‚5èC¥èic= (c
1
,c
2
,...,c
n
)| ½Â•
Suppt(c) = {1 ≤i≤n: c
i
6= 0}.
eé?¿ü‡èiu,v ∈C,kSuppt(v) ⊆Suppt(u),K¡u CXv.eèC˜‡š"èic
•C X§ Xþê,K¡c´˜‡4èi.e‚5èC¥¤kèiþ´4èi, K¡‚5
èC´4‚5è[19].
'u4è½,kXe¿©^‡.
Ún3.[20](Aschikhmin-Barg^‡)eF
p
þ‚5èC•ŒÇ²-þw
max
Ú•Dz-
þw
min
÷v
w
min
w
max
>
p−1
p
,
KèC´4è.
••B,e©¥PM= Tr(
b
2
a
),ω= −γ.
3.̇(Ø9y²
3.1.m•ÛêžèC
D
ëê9Ù-þ©Ù
!?Øm•Ûêž, Äu(2) ªE(1) ª‚5èC
D
è•, ‘ê±9 -þ©Ù.Äk
OŽè•.
Ún4.C
D
è••n,K
n=
(
p
m−1
,ω−
M
4
= 0,
p
m−1
+
1
p
G
m+1
η(a)¯η(ω−
M
4
),ω−
M
4
6= 0.
y²d(3)ªŒ
n=
1
p
X
x∈F
∗
q

X
y∈F
p
ζ
y(Tr(ax
2
+bx)+ω)
p

=
1
p
X
x∈F
q

X
y∈F
p
ζ
y(Tr(ax
2
+bx)+ω)
p

−
1
p
X
y∈F
p
ζ
ωy
p
=
1
p
X
x∈F
q

1+
X
y∈F
∗
p
ζ
y(Tr(ax
2
+bx)+ω)
p

DOI:10.12677/pm.2023.1351421392nØêÆ
4©Ÿ
= p
m−1
+
1
p
G
m
η(a)
X
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y)
=



p
m−1
,ω−
M
4
= 0,
p
m−1
+
1
p
G
m+1
η(a)¯η(ω−
M
4
),ω−
M
4
6= 0.
(4)
e¡m©(½‚5èC
D
¥š"èiDz-þ.^]AL«8ÜA¥ƒ‡ê.
N
ρ
(a,b) = ]

x∈F
∗
p
m
|Tr

ax
2
+bx

+ω= 0,Tr(ρx) = 0

.
Kèic
ρ
∈C
D

ρ∈F
∗
q

Dz-þŒ±L«•
wt(c
ρ
) = n−N
ρ
(a,b),(5)
Ù¥n•èC
D
è•.w,
N
ρ
(a,b) =
1
p
2
X
x∈F
∗
q

X
y∈F
p
ζ
y(Tr(ax
2
+bx)+ω)
p

X
z∈F
p
ζ
zTr(ρx)
p

=
1
p
2
X
x∈F
q

1+
X
y∈F
∗
p
ζ
y(Tr(ax
2
+bx)+ω)
p

1+
X
z∈F
∗
p
ζ
zTr(ρx)
p

−
1
p
X
y∈F
p
ζ
ωy
p
= p
m−2
+
1
p
2

Ω
1
+Ω
2
+
X
x∈F
q
X
z∈F
∗
p
ζ
zTr(ρx)
p

= p
m−2
+
1
p
2

Ω
1
+Ω
2

,(6)
Ù¥
Ω
1
=
X
x∈F
q
X
y∈F
∗
p
ζ
y(Tr
(
ax
2
+bx
)
+ω)
p
=



0,ω−
M
4
6= 0,
G
m+1
η(a)¯η(ω−
M
4
),ω−
M
4
= 0.
(7)
Ω
2
=
X
y∈F
∗
p
X
z∈F
∗
p
X
x∈F
q
ζ
Tr
(
ayx
2
+(by+zρ)x
)
+ωy
p
.
e¡OŽΩ
2
Š"
Ún5.Ω
2
=
P
y∈F
∗
p
P
z∈F
∗
p
P
x∈F
q
ζ
Tr
(
ayx
2
+(by+zρ)x
)
+ωy
p
.
DOI:10.12677/pm.2023.1351421393nØêÆ
4©Ÿ
(1)eω−
M
4
= 0,K
Ω
2
=











0,Tr

ρ
2
a

= 0,
(p−1)G
m+1
η(a)¯η

−Tr

ρ
2
a

,Tr

ρ
2
a

6= 0…Tr

bρ
a

= 0,
−G
m+1
η(a)¯η

−Tr

ρ
2
a

,Tr

ρ
2
a

·Tr

bρ
a

6= 0.
(2)eω−
M
4
6= 0,K
Ω
2
=

































(p−1)G
m+1
η(a)¯η(ω−
M
4
),Tr

ρ
2
a

= Tr

bρ
a

= 0,
−G
m+1
η(a)¯η(ω−
M
4
),Tr

ρ
2
a

= 0…Tr

bρ
a

6= 0,
−G
m+1
η(a)

¯η

−Tr

ρ
2
a

+ ¯η(ω−
M
4
)

,

Tr

ρ
2
a

6= 0…Tr

bρ
a

= 0

½ö

Tr

ρ
2
a

·Tr

bρ
a

6= 0…4ωTr(
ρ
2
a
)
+Tr
2

bp
a

6= MTr

ρ
2
a


,
G
m+1
η(a)

(p−1)¯η

−Tr

ρ
2
a

−¯η(ω−
M
4
)

,Tr

ρ
2
a

·Tr

bρ
a

6= 0…4ωTr(
ρ
2
a
)
+Tr
2

bp
a

= MTr

ρ
2
a

.
y²
Ω
2
=
X
y∈F
∗
p
X
z∈F
∗
p
X
x∈F
q
ζ
Tr
(
ayx
2
+(by+zρ)x
)
+ωy
p
=
X
y∈F
∗
p
X
z∈F
∗
p
G
m
η(ay)ζ
Tr(−
(by+zρ)
2
4ay
)+ωy
p
= G
m
η(a)
X
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y)
X
z∈F
∗
p
ζ
−
Tr

ρ
2
a

z
2
4y
−
Tr
(
bρ
a
)
z
2
p
.
•y²ω−
M
4
6= 0œ/,ω−
M
4
= 0y²•{aq.e¡©o«œ/OΩ
2
.
œ/1:Tr

ρ
2
a

= 0…Tr

bρ
a

= 0.K
Ω
2
= (p−1)G
m
η(a)
X
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y) = (p−1)G
m
η(a)
X
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η

ω−
M
4

y

¯η

ω−
M
4

= (p−1)G
m+1
η(a)¯η

ω−
M
4

.
œ/2:Tr

ρ
2
a

= 0…Tr

bρ
a

6= 0.K
Ω
2
= G
m
η(a)
X
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y)
X
z∈F
∗
p
ζ
−
T
(
bp
a
)
z
2
p
= −G
m
η(a)
X
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y)
= −G
m+1
η(a)¯η

ω−
M
4

.
DOI:10.12677/pm.2023.1351421394nØêÆ
4©Ÿ
œ/3:Tr

ρ
2
a

6= 0…Tr

bρ
a

.
= 0.K
Ω
2
= G
m
η(a)
P
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y)
P
z∈F
∗
p
ζ
−
Tr

ρ
2
a

z
2
4y
p
= G
m
η(a)
X
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y)
X
z∈F
p
ζ
−
Tr

ρ
2
a

z
2
4y
p
−G
m
η(a)
X
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y).
dÚn2Œ
Ω
2
= G
m+1
η(a)¯η

−Tr

ρ
2
a

P
y∈F
∗
p
ζ
(ω−
M
4
)y
p
−G
m
η(a)
P
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y)
= −G
m+1
η(a)

¯η

−Tr

ρ
2
a

+ ¯η(ω−
M
4
)

.
œ/4:Tr

ρ
2
a

6= 0…Tr

bρ
a

6= 0.K
Ω
2
= G
m
η(a)
X
y∈F
∗
p
ζ
(ω−
M
4
)y
p
¯η(y)
X
z∈F
p
ζ
−
Tr

ρ
2
a

z
2
4y
−
Tr
(
bp
a
)
z
2
p
−G
m+1
η(a)¯η(ω−
M
4
).
dÚn2Œ
Ω
2
= G
m+1
η(a)
X
y∈F
∗
p
ζ

4Tr(
ρ
2
a
)ω+Tr
2
(
bp
a
)
−MTr

ρ
2
a

y
4Tr

ρ
2
a

p
¯η

−Tr

ρ
2
a

−G
m+1
η(a)¯η(ω−
M
4
).
e4Tr(
ρ
2
a
)ω+Tr
2

bp
a

= MTr

ρ
2
a

,K
Ω
2
= G
m+1
η(a)

(p−1)¯η

−Tr

ρ
2
a

−¯η(ω−
M
4
)

.
e4Tr(
ρ
2
a
)ω+Tr
2

bp
a

6= MTr

ρ
2
a

,K
Ω
2
= −G
m+1
η(a)¯η

−Tr

ρ
2
a

−G
m+1
η(a)¯η(ω−
M
4
)
= −G
m+1
η(a)

¯η(ω−
M
4
)+ ¯η

−Tr

ρ
2
a

.

5¿?¿ρ∈F
∗
p
m
,wt(c
ρ
) 6= 0,KC
D
‘ê•m.nܱþ(JŒXe(Ø.
·K1.m•Ûê,½Â8 •(2)ª.K(1) ª½Â‚5èC
D
è••n, ‘ê•m. š"è
iDz-þ•
wt(c
ρ
) = (p−1)p
m−2
+N.
(1)eω−
M
4
= 0,Kn= p
m−1
.…
DOI:10.12677/pm.2023.1351421395nØêÆ
4©Ÿ
N=





















0,Tr

ρ
2
a

= 0,
−
p−1
p
2
G
m+1
η(a),Tr

bρ
a

= 0…¯η

Tr

ρ
2
a

= −1,
p−1
p
2
G
m+1
η(a),Tr

bρ
a

= 0…¯η

Tr

ρ
2
a

= 1,
1
p
2
G
m+1
η(a),Tr

bρ
a

6= 0…¯η

Tr

ρ
2
a

= −1,
−
1
p
2
G
m+1
η(a),Tr

bρ
a

6= 0…¯η

Tr

ρ
2
a

= 1.
(2)eω−
M
4
6= 0,Kn= p
m−1
+
1
p
G
m+1
η(a)¯η(ω−
M
4
).…
N=



















































0,Tr

ρ
2
a

= Tr

bρ
a

= 0,
1
p
G
m+1
η(a)¯η(ω−
M
4
),Tr

ρ
2
a

= 0…Tr

bρ
a

6= 0,
1
p
2
G
m+1
η(a)(p¯η

ω−
M
4
)+1

,

Tr

ρ
2
a

6= 0,Tr

bρ
a

= 0…¯η

Tr

ρ
2
a

= −1

½ö

Tr

ρ
2
a

6= 0,Tr

bρ
a

6= 0,4Tr(
ρ
2
a
)ω+Tr
2

bp
a

6=
MTr

ρ
2
a

…¯η

Tr

ρ
2
a

= −1

,
1
p
2
G
m+1
η(a)(p¯η(ω−
M
4
)−1),

Tr

ρ
2
a

6= 0,Tr

bρ
a

= 0…¯η

Tr

ρ
2
a

= 1

½ö

Tr

ρ
2
a

6= 0,Tr

bρ
a

6= 0,4Tr(
ρ
2
a
)ω+Tr
2

bp
a

6=
MTr

ρ
2
a

…¯η

Tr

ρ
2
a

= 1

,
1
p
2
G
m+1
η(a)¯η(ω−
M
4
),Tr

ρ
2
a

6= 0,Tr

bρ
a

6= 0…4Tr(
ρ
2
a
)ω+Tr
2

bp
a

=
MTr

ρ
2
a

.
y²d(4),(5)Ú(6)ªŒ
wt(c
ρ
) = p
m−1
+
1
p
Ω
1
−

p
m−2
+
1
p
2
(Ω
1
+Ω
2
)

= (p−1)p
m−2
+
p−1
p
2
Ω
1
−
1
p
2
Ω
2
,
K
N=
p−1
p
2
Ω
1
−
1
p
2
Ω
2
.
2(Ü(7)ªÚÚn5w,Œ(Ø.
5P1.éu·K1(1)¥èC
D
,m≥5 ž:
eG
m+1
η(a) = (−1)
(p−1)(m+1)
4
p
m+1
2
η(a) = ±p
m+1
2
,K
w
min
w
max
=
(p−1)(p
m−2
−p
m−3
2
)
(p−1)(p
m−2
+p
m−3
2
)
>
p−1
p
.
éu·K1(2)¥èC
D
,m≥5 ž:
eG
m
η(a) = (−1)
m−1
√
−1
(p−1)
2
m
4
√
p
m
η(a)·¯η(ω−
M
4
) = p
m
2
,K
w
min
w
max
=
(p−1)p
m−2
(p−1)p
m−2
+(p+1)p
m−4
2
>
p−1
p
.
DOI:10.12677/pm.2023.1351421396nØêÆ
4©Ÿ
eG
m
η(a) = (−1)
m−1
√
−1
(p−1)
2
m
4
√
p
m
η(a)·¯η(ω−
M
4
) = −p
m
2
,K
w
min
w
max
=
(p−1)p
m−2
−(p+1)p
m−4
2
(p−1)p
m−2
>
p−1
p
.
dÚn3Œ•,!E‚5è3õꜹe´4è.
e¡m©OŽ-þ©Ù.Äk,‰Ñü‡OŽªÇI‡Ún,Ù¥mþ•Ûê.
Ún6.[17]t∈F
p
.eN(t) = ]
n
x∈F
p
m
|Tr

x
2
a

= t
o
.K
N(t) =
(
p
m−1
,t= 0,
p
m−1
+
1
p
G
m+1
η(a)¯η(−t),t6= 0.
Ún7.[17]t∈F
p
,…a,b∈F
∗
p
m
.KN(t,0) = ]
n
x∈F
p
m
|Tr

x
2
a

= t,Tr

bx
a

= 0
o
.
et= 0,K
N(0,0) =
(
p
m−2
,p|M,
p
m−2
+
p−1
p
2
G
m+1
η(a)¯η(−M),p-M.
et6= 0,K
N(t,0) =
(
p
m−2
+
1
p
G
m+1
η(a)¯η(−t),p|M,
p
m−2
−
1
p
2
G
m+1
η(a)¯η(−M),p-M.
±þ(Jƒ,Kke¡(Ø.
½n1.p•Ûƒê,m•Ûê,½Â8X(2)ª¤«…ω−
M
4
= 0.K(1)ª½ÂèC
D
•
[p
m−1
,m]‚5è,Ù-þ©ÙXL1 ¤«.
Table1.TheweightdistributionofcodeC
D
inTheorem1
L1.½n1¥èC
D
-þ©Ù
-þªê
01
(p−1)p
m−2
A
ω
1
(p−1)

p
m−2
+
1
p
2
G
m+1
η(a)

A
ω
2
(p−1)

p
m−2
−
1
p
2
G
m+1
η(a)

A
ω
3
(p−1)p
m−2
+
1
p
2
G
m+1
η(a)A
ω
4
(p−1)p
m−2
−
1
p
2
G
m+1
η(a)A
ω
5
Ù¥,A
ω
1
= p
m−1
−1.
DOI:10.12677/pm.2023.1351421397nØêÆ
4©Ÿ
e¯η(−M) = −1,KA
ω
2
= A
ω
3
=
1
2
(p−1)(p
m−2
+
1
p
2
G
m+1
η(a)).
A
ω
4
=
1
2
1
p
2
G
m+1
η(a)
((1−p)G
2
m+1
η
2
(a)+(p
m
+p
m+2
−2p
m+1
)G
m+1
η(a)+(p
m+3
−p
m+2
)),
A
ω
5
=
1
2
1
p
2
G
m+1
η(a)
((1−p)G
2
m+1
η
2
(a)+(p
m
+p
m+2
−2p
m+1
)G
m+1
η(a)+(p
m+2
−p
m+3
)).
e¯η(−M) = 1,KA
ω
2
= A
ω
3
=
1
2
(p−1)(p
m−2
−
1
p
2
G
m+1
η(a)).
A
ω
4
=
1
2
1
p
2
G
m+1
η(a)
((p−1)G
2
m+1
η
2
(a)+(p
m
+p
m+2
−2p
m+1
)G
m+1
η(a)+(p
m+3
−p
m+2
)),
A
ω
5
=
1
2
1
p
2
G
m+1
η(a)
((p−1)G
2
m+1
η
2
(a)+(p
m
+p
m+2
−2p
m+1
)G
m+1
η(a)+(p
m+2
−p
m+3
)).
y²d·K1(1)Œ•,C
D
¥š"èiDz-þ•L1¥11 ¤«. òL1¥11 
Šlþ–e•gP•w
1
,w
2
,w
3
,w
4
,w
5
,KéAªêP•A
w
1
,A
w
2
,A
w
3
,A
w
4
,A
w
5
.
d·K1ÚÚn6Œ
A
w
1
= N(0)−1 = p
m−1
−1.
Ï•ω−
M
4
= 0, ¤±M6= 0, =p-M.d·K1ÚÚn7 ŒA
ω
2
= A
ω
3
=
1
2
(p−1)(p
m−2
−
1
p
2
G
m+1
η(a)¯η(−M)).
dPless˜Ýúª[19]Œ
(
A
w
1
+A
w
2
+A
w
3
+A
w
4
+A
w
5
= p
m
−1,
w
1
A
w
1
+w
2
A
w
2
+w
3
A
w
3
+w
4
A
w
5
+w
5
A
w
5
= (p−1)np
m−1
.
(8)
Ïd,e¯η(−M)) = −1,KA
ω
2
= A
ω
3
=
1
2
(p−1)(p
m−2
+
1
p
2
G
m+1
η(a)). 2(Ü(8) ªŒ
A
ω
4
=
1
2
1
p
2
G
m+1
η(a)
((1−p)G
2
m+1
η
2
(a)+(p
m
+p
m+2
−2p
m−1
)G
m+1
η(a)+(p
m+3
−p
m+2
)),
A
ω
5
=
1
2
1
p
2
G
m+1
η(a)
((1−p)G
2
m+1
η
2
(a)+(p
m
+p
m+2
−2p
m−1
)G
m+1
η(a)+(p
m+2
−p
m+3
)).
e¯η(−M) = 1,KA
ω
2
= A
ω
3
=
1
2
(p−1)(p
m−2
−
1
p
2
G
m+1
η(a)). 2(Ü(8) ªŒ
A
ω
4
=
1
2
1
p
2
G
m+1
η(a)
((p−1)G
2
m+1
η
2
(a)+(p
m
+p
m+2
−2p
m−1
)G
m+1
η(a)+(p
m+3
−p
m+2
)),
A
ω
5
=
1
2
1
p
2
G
m+1
η(a)
((p−1)G
2
m+1
η
2
(a)+(p
m
+p
m+2
−2p
m−1
)G
m+1
η(a)+(p
m+2
−p
m+3
)).
ÏdèC
D
-þ©Ù.
e¡~fŒdMagma§Sy.
~1.½Â8X(2) ª¤«,…p= 5,m= 3,a= 2,b= 4,ω= Tr(2). KC
D
•[25,3] ‚5
DOI:10.12677/pm.2023.1351421398nØêÆ
4©Ÿ
è,Ù-þOêì•1+24z
20
+12z
24
+12z
16
+48z
21
+28z
19
,†½n1(ؘ—.
~2.½Â8X(2) ª¤«,…p= 7,m= 5,a=1,b=2,ω= Tr(1). KC
D
•[2401,5] ‚
5è,Ù-þOêì•1+2400z
2058
+1050z
2016
+1050z
2100
+6006z
2051
+6300z
2065
,†½n1(
ؘ—.
3.2.m•óêžèC
D
ëê9Ù-þ©Ù
!?Øm•óêž, Äu(2) ªE(1)ª‚5èC
D
è•, ‘ê±9-þ©Ù. du
y²•{Úm•Ûêœ/aq,¤±Ø2Kã.
Ún8.C
D
è••n,K
n=
(
p
m−1
+
p−1
p
G
m
η(a),ω−
M
4
= 0,
p
m−1
−
1
p
G
m
η(a),ω−
M
4
6= 0.
·K2.m•óê, ½Â8•(2)ª. K(1) ª½Â‚5èC
D
è••n, ‘ê•m. š"è
iDz-þ•
wt(c
ρ
) = (p−1)p
m−2
+N.
(1)eω−
M
4
= 0,Kn= p
m−1
+
p−1
p
G
m
η(a). …
N=









0,Tr

ρ
2
a

= Tr(
bρ
a
) = 0,
p−1
p
G
m
η(a),Tr

ρ
2
a

·Tr(
bρ
a
) = 0…Tr

bρ
a

6= Tr

ρ
2
a

,
p−2
p
G
m
η(a),Tr

ρ
2
a

·Tr(
bρ
a
) 6= 0.
(1)eω−
M
4
6= 0,Kn= p
m−1
−
1
p
G
m
η(a)). …
N=













































0,(Tr

ρ
2
a

= Tr

bρ
a

= 0)½ö(Tr

ρ
2
a

6= 0,Tr

bρ
a

= 0…
¯η(−(ω−
M
4
)Tr

ρ
2
a

) = −1))½ö(Tr

ρ
2
a

·Tr

bρ
a

6= 0,
4Tr(
ρ
2
a
)ω+Tr
2

bp
a

6= MTr

ρ
2
a

…¯η(4ωTr

ρ
2
a

+Tr
2

bρ
a

−MTr

ρ
2
a

) = −1),
−1
p
G
m
η(a),(Tr

ρ
2
a

= 0,Tr

bρ
a

6= 0)½ö(Tr

ρ
2
a

·Tr

bρ
a

6= 0…
4Tr(
ρ
2
a
)ω+Tr
2

bp
a

= MTr

ρ
2
a

),
−2
p
G
m
η(a),(Tr

ρ
2
a

6= 0,Tr

bρ
a

= 0,¯η(−(ω−
M
4
)Tr

ρ
2
a

) = 1))½ö
(Tr

ρ
2
a

·Tr

bρ
a

6= 0,4ωTr(
ρ
2
a
)+Tr
2

bp
a

6= MTr

ρ
2
a

,
¯η

4ωTr

ρ
2
a

+Tr
2

bρ
a

−MTr

ρ
2
a

= 1).
5P2.éu·K2 ü«œ/eèC
D
,m≥6ž,C
D
´4‚5è. y²•{†5P1 ˜
,ùp2ØKã.
DOI:10.12677/pm.2023.1351421399nØêÆ
4©Ÿ
e¡‰ÑOŽªÇ©ÙI‡ü‡Ún,Ù¥mþ•óê.
Ún9.[17]t∈F
p
,eN(t) = ]
n
x∈F
p
m
|Tr

x
2
a

= t
o
.K
N(t) =
(
p
m−1
+
p−1
p
G
m
η(a),t= 0,
p
m−1
−
1
p
G
m
η(a),t6= 0.
Ún10.[17]t∈F
p
,…a,b∈F
∗
p
m
.N(0,t) = ]
n
x∈F
p
m
|Tr

x
2
a

= 0,Tr

bx
a

= t
o
.
et= 0,K
N(0,0) =
(
p
m−2
+
p−1
p
G
m
η(a),p|M,
p
m−2
,p-M.
et6= 0,K
N(t,0) =
(
p
m−2
,p|M,
p
m−2
+
1
p
G
m
η(a),p-M.
nܱþ(Jw,ŒXe½n.
½n2.p•Ûƒê,m•óê,½Â8X(2)ª¤«…ω−
M
4
= 0.K(1)ª½ÂèC
D
•
h
p
m−1
+
p−1
p
G
m
η(a),m
i
‚5è,Ù-þ©ÙXL2¤«.
Table2.TheweightdistributionofcodeC
D
inTheorem2
L2.½n2¥èC
D
-þ©Ù
-þªê
01
(p−1)p
m−2
p
m−2
−1
(p−1)p
m−2
+
p−1
p
G
m
η(a)2(p
m−1
−p
m−2
)+
1
G
m
η(a)
(p
m
−p
m−1
)
(p−1)p
m−2
+
p−2
p
G
m
η(a)(p
m
+p
m−2
−2p
m−1
)−
1
G
m
η(a)
(p
m
−p
m−1
)
5P3.dL2w,Œ, m=2ž, -þ•(p−1)p
m−2
èiÑygê•p
m−2
−1= 0
g.džC
D
•-‚5è.
e¡~fŒdMagma§Sy.
~3.½Â8X(2)ª¤«, …p=5,m= 4,a=1,b= 2,ω=Tr(1).KC
D
•[105,4]‚
5è,Ù-þOêì•1+24z
100
+180z
80
+420z
85
,†½n2(ؘ—.
~4.½Â8X(2)ª¤«, …p= 7,m= 2,a= 2,b= 4,ω= Tr(2).KC
D
•[13,2]‚5
è,Ù-þOêì•1+18z
12
+30z
11
,†½n2(ؘ—.
4.o(
©í2©z[15–17] ¥‚5èE,Äu(2)ª…©m•ÛêÚm•óêü«œ/é(1)
ª‚5è?1ïÄ, EAa#ëêp‚5è. è•Ý, ‘ê±9-þ©Ùëꆮk
DOI:10.12677/pm.2023.1351421400nØêÆ
4©Ÿ
(JþØÓ.¿^Magma §Sy(Ø(5.•, ÏLAschikhmin-Barg^‡`²,©
E‚5èõꜹe´4‚5è, Œ±^5OäkûЖ¯(“—••Y. ω−
M
4
6= 0
žC
D
ªÇ©Ù3‰a,Öö.
ë•©z
[1]See,K.andSong,S.Y.(1998)AssociationSchemesofSmallOrder.JournalofStatistical
PlanningandInference ,73,225-271.https://doi.org/10.1016/S0378-3758(98)00064-0
[2]Yuan, J.andDing,C.(2005)SecretSharingSchemesfromThreeClassesofLinearCodes.IEEE
TransactionsonInformationTheory,52,206-212.https://doi.org/10.1109/TIT.2005.860412
[3]Calderbank,R.andKantor,W.M.(1986)TheGeometryofTwo-WeightCodes.Bulletinof
theLondonMathematicalSociety,18,97-122.https://doi.org/10.1112/blms/18.2.97
[4]Baumert,L.D.andMcEliece,R.J.(1972)WeightsofIrreducibleCyclicCodes.Information
andControl,20,158-175.https://doi.org/10.1016/S0019-9958(72)90354-3
[5]Ding,C.andNiederreiter,H.(2007)Cyclotomic LinearCodesofOrder3. IEEETransactions
onInformationTheory,53,2274-2277.https://doi.org/10.1109/TIT.2007.896886
[6]Tang,C.,Qi,Y.andHuang,D.(2015)Two-WeightandThree-WeightLinearCodesfrom
SquareFunctions.IEEECommunicationsLetters,20,29-32.
https://doi.org/10.1109/LCOMM.2015.2497344
[7]Yang,S.andYao,Z.A.(2017)CompleteWeightEnumeratorsofaFamilyofThree-Weight
LinearCodes.Designs,CodesandCryptography,82,663-674.
https://doi.org/10.1007/s10623-016-0191-x
[8]Heng, Z.,Ding, C. andZhou,Z. (2018) Minimal LinearCodes overFiniteFields.FiniteFields
andTheirApplications,54,176-196.https://doi.org/10.1016/j.ffa.2018.08.010
[9]Jian,G.,Lin,Z.andFeng,R.(2019)Two-WeightandThree-WeightLinearCodesBasedon
WeilSums.FiniteFieldsandTheirApplications,57,92-107.
https://doi.org/10.1016/j.ffa.2019.02.001
[10]Lu,H.andYang,S.(2020)TwoClassesofLinearCodesfromWeilSums.IEEEAccess,8,
180471-180480.https://doi.org/10.1109/ACCESS.2020.3028141
[11]Li,C.,Yue,Q.andFu,F.W.(2017)AConstructionofSeveralClassesofTwo-Weightand
Three-Weight LinearCodes.ApplicableAlgebrainEngineering,CommunicationandComput-
ing,28,11-30.https://doi.org/10.1007/s00200-016-0297-4
[12]Hu,Z.,Wang,L.,Li,N.,etal.(2021)SeveralClassesofLinearCodeswithFewWeights
from theClosedButterflyStructure.FiniteFieldsandTheirApplications,76,Article101926.
https://doi.org/10.1016/j.ffa.2021.101926
DOI:10.12677/pm.2023.1351421401nØêÆ
4©Ÿ
[13]Duan,B.,Han,G. andQi,Y. (2022) AClassof Three-Weight Linear Codesover Finite Fields
ofOddCharacteristic.ApplicableAlgebrainEngineering,CommunicationandComputing,
1-17.
[14]Zhu,C.andLiao,Q.(2023)TwoNewClassesofProjectiveTwo-WeightLinearCodes.Finite
FieldsandTheirApplications,88,Article102186.https://doi.org/10.1016/j.ffa.2023.102186
[15]Ding,K.andDing,C.(2015)AClassofTwo-WeightandThree-WeightCodesandTheir
ApplicationsinSecretSharing.IEEETransactionsonInformationTheory,61,5835-5842.
https://doi.org/10.1109/TIT.2015.2473861
[16]Li,F.,Wang,Q.andLin,D.(2018)AClassofThree-WeightandFive-WeightLinearCodes.
DiscreteAppliedMathematics,241,25-38.https://doi.org/10.1016/j.dam.2016.11.005
[17]Ouyang,J.,Liu,H.andWang,X.(2021)SeveralClassesofp-aryLinearCodeswithFew
Weights.ApplicableAlgebrainEngineering,CommunicationandComputing.
[18]Lidl,R.andNiederreiter,H.(1997)FiniteFields.CambridgeUniversityPress,Cambridge.
[19]Huffman,W.andPless,V.(2010)FundamentalsofError-CorrectingCodes.CambridgeUni-
versityPress,Cambridge.
[20]Ashikhmin,A.andBarg,A.(1998)MinimalVectorsinLinearCodes.IEEETransactionson
InformationTheory,44,2010-2017.https://doi.org/10.1109/18.705584
DOI:10.12677/pm.2023.1351421402nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.