设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(5),1440-1446
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135148
[-Gorenstein²"†‘ê
"""ùùùïïï
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2023c422F¶¹^Fϵ2023c524F¶uÙFϵ2023c531F
Á‡
©Ì‡ïÄ[-Gorenstein²"9ÙÄ5Ÿ§¿&?ÙƒéuáÜk'(Ø"Ó
ž§£ãk•[-Gorenstein²"ÓN‘ê"
'…c
[-Gorenstein²"§[-Gorenstein²"‘ê§[-S
Quasi-GorensteinFlatModulesand
Dimensions
HongjuanXin
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.22
nd
,2023;accepted:May24
th
,2023;published:May31
st
,2023
Abstract
Inthispaper,weinvestigatequasi-Gorensteinflatmodulesandtheirbasicproperties,
and studythe relative conclusionsof thismodule classrespect toshort exactsequence.
Simultaneously,wedescribefinitequasi-Gorensteinflathomologicaldimensions.
©ÙÚ^:"ùï.[-Gorenstein²"†‘ê[J].nØêÆ,2023,13(5):1440-1446.
DOI:10.12677/pm.2023.135148
"ùï
Keywords
Quasi-GorensteinFlatModules,Quasi-GorensteinFlatDimensions,Quasi-Injective
Modules
Copyright
c
2023byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
20-V60c“,Auslander[1]ïÄV>Noether‚þG-‘ê•0k•)¤.20-V
90c“,Enochs3?¿(Ü‚þÚ\GorensteinÝ,GorensteinSÚGorenstein²"
[2,3],ùna©O´²;ÓN“ê¥Ý,SÚ²"3ƒéÓN“ê¥˜«í2,
•´GorensteinÓN“ê-‡ïÄé–.2022c,©z[4]?˜Ú0[-GorensteinÝ,[-
GorensteinSVg,¿‰ÑÙÓN5ŸÚƒAk•[-GorensteinÓN‘ê£ã.
ɱþ©zéu,©ÏL[-SÚÜþȼfòGorenstein²"í2–[-Gorenstein
²",¿é[-Gorenstein²"ÓN5ŸÚ[-Gorenstein²"‘ê?1ïÄ.
2.ý•£
©¥J‚þ•kü (Ü‚,þ•j,Ù¥M
+
=Hom
Z
(M,Q/Z)L«M
A.|^I(R),QI(R),QGI(R)©OL«S,[-S,±9[-GorensteinSR-a,
^F(R),QGF(R),GF(R)©OL«²",[-Gorenstein²",±9Gorenstein²"R-a,
QGfd
R
(M)L«†R-M[-Gorenstein²"‘ê.
¡X´Gorenstein²",XJ•3²"R-ÜSF=···→F
2
→F
1
→F
0
→
F
0
→F
1
→···,¦X
∼
=
Im(F
0
→F
0
),¿…é?¿B∈I(R),B⊗
R
F´ÜS.¡Y´[
-GorensteinS[4],XJ•3SR-ÜE/I=···→I
2
→I
1
→I
0
→I
−1
→I
−2
→···,
¦Y
∼
=
Im(I
1
→I
0
),¿…é?¿E∈QI(R),Hom
R
(E,I)´ÜS.¡R-M´[-S
[5],…=é?¿R-A,R-÷Óg:M→A,±9R-Óf:M→A,•3f
0
∈End(M),¦
f=gf
0
.
F´‡a.¡F´ÝŒ)a,XJF•¹Ýa,é?¿ÜS0→M
1
→M→
M
2
→0,eM
2
∈F,KM∈F…=M
1
∈F.
3.[-Gorenstein²"
½Â3.1¡R-M´[-Gorenstein²",XJ•3²"R-ÜE/
DOI:10.12677/pm.2023.1351481441nØêÆ
"ùï
F=···→F
1
→F
0
→F
−1
→F
−2
→···,
¦M
∼
=
Im(F
1
→F
0
),¿…é?¿E∈QI(R),E⊗
R
F´ÜS.
5Ï•I(R)⊆QI(R),Kd½ÂŒQGF(R)⊆GF(R).
Ún3.2N´†R-,XJN´[-Gorenstein²"…=é?¿E∈QI(R),i≥1
ž,Tor
R
i
(E,N)=0,¿…•3R-Ü
X=0→N→F
0
→F
−1
→F
−2
→···,
Ù¥F
i
∈F(R),i≤0,¦E⊗
R
X´ÜS.
y²d½Â3.1w,Œ.
Ún3.3M´†R-,XJM´[-Gorenstein²"…=•3R-áÜS
0→M→F→N→0,¦F´²",N´[-Gorenstein²".
y²⇒)dÚn3.2••3R-Ü
X=0→M→F
0
→F
−1
→F
−2
→···,
¦F
i
∈F(R),i≤0,¿…é?¿E∈QI(R),E⊗
R
XÜ.ÏdŒÜ
0→M→F
0
→Im(F
0
→F
−1
)→0.
PN:=Im(F
0
→F
−1
),eyN´[-Gorenstein²".
Z=···→F
0
2
→F
0
1
→F
0
0
→M→0´M²"©),dÚn3.2•é?¿E∈
QI(R),E⊗
R
ZÜ.(ÜE/XÚZ,Kd½Â3.1Œ•N´[-Gorenstein²".
⇐)E∈QI(R)§dÚn3.2ŒTor
R
i
(E,N)=0,^¼fE⊗
R
−Š^áÜ0→M→
F→N→0,KŒXeÜS
···→Tor
R
i+1
(E,N)→Tor
R
i
(E,M)→Tor
R
i
(E,F)→Tor
R
i
(E,N)→···
→Tor
R
1
(E,N)→E⊗
R
M→E⊗
R
F→E⊗
R
N→0,
Ïdé?¿i>0,Tor
R
i
(E,M)=0,¤±0→E⊗
R
M→E⊗
R
F→E⊗
R
N→0´ÜS.
qÏ•N´[-Gorenstein²",dÚn3.2••3R-ÜX=0→N→F
0
→F
−1
→
F
−2
→···,Ù¥F
i
∈F(R),i≤0,¿…é?¿E∈QI(R),E⊗
R
XÜ.(ÜáÜÚX,Kk
Y=0→M→F→F
0
→F
−1
→F
−2
→···,
¦é?¿E∈QI(R),E⊗
R
YÜ,dÚn3.2•M´[-Gorenstein²".
·K3.4R´mvà‚,K±e(ؤá.
(i)M´[-Gorenstein²"†R-,KHom
Z
(M,Q/Z)´[-GorensteinSmR-.
(ii)[-Gorenstein²"a´ÝŒ).
DOI:10.12677/pm.2023.1351481442nØêÆ
"ùï
y²(i)M∈QGF(R),K•3²"R-ÜE/
F=···→F
1
→F
0
→F
−1
→F
−2
→···,
¦M
∼
=
Im(F
1
→F
0
),¿…é?¿E∈QI(R),E⊗
R
F´ÜS.qÏ•Hom
Z
(E⊗
R
F,Q/Z)
∼
=
Hom
R
(E,Hom
Z
(F,Q/Z)),¤±Hom
Z
(F,Q/Z)Ü,•3Ü
Hom
Z
(F,Q/Z)=···→Hom
Z
(F
−1
,Q/Z)→Hom
Z
(F
0
,Q/Z)→Hom
Z
(F
1
,Q/Z)→···,
dué?¿êi,F
i
∈F(R),KHom
Z
(F
i
,Q/Z))∈I(R),¿…¦
Hom
Z
(M,Q/Z)
∼
=
Im(Hom
Z
(F
0
,Q/Z)→Hom
Z
(F
1
,Q/Z)),
ÏdHom
Z
(M,Q/Z)´[-GorensteinSmR-.
(ii)d½Â3.1,²"w,´[-Gorenstein²",0→M
0
→M→M
00
→0´R-á
Ü,…M
00
∈QGF(R),K•IyM
0
∈QGF(R)⇔M∈QGF(R).
⇒)M
0
∈QGF(R),E∈QI(R),dþãáÜŒ0→M
00+
→M
+
→M
0+
→0´
Ü,Ù¥M
00+
∈QGI(R),dbM
0+
∈QGI(R),^¼fHom
R
(E,−)Š^dáÜ,d©
z[4,Ún2.3(ii)]ŒíÑExt
i
R
(E,M
+
)=0,¿…kXeÜS
F
0+
=···→F
0+
−2
→F
0+
−1
→F
0+
0
→M
0+
→0,
F
00+
=···→F
00+
−2
→F
00+
−1
→F
00+
0
→M
00+
→0,
Ù¥é?¿êi≤0,F
0+
i
,F
00+
i
Ñ´S,¿…Hom
R
(E,F
0+
)ÚHom
R
(E,F
00+
)þ´Ü.
Šâ©z[6,Ún8.2.1]y²L§,ŒEXe1Ü†ã
.
.
.

.
.
.

.
.
.

0
//
F
00+
−1

//
F
00+
−1
⊕F
0+
−1
//

F
0+
−1
//

0
0
//
F
00+
0

//
F
00+
0
⊕F
0+
0
//

F
0+
0
//

0
0
//
M
00+

//
M
+
//

M
0+
//

0
000
••Bå„,¥mP•F
+
,ϕHom
R
(E,F
0+
)ÚHom
R
(E,F
00+
)þ´ÜE/,KdÜ
0→Hom
R
(E,F
00+
)→Hom
R
(E,F
+
)→Hom
R
(E,F
0+
)→0ŒíÑHom
R
(E,F
+
)•´ÜE/,
¤±M
+
∈QGI(R),qÏ•R´mvà‚,lM∈QGF(R).
DOI:10.12677/pm.2023.1351481443nØêÆ
"ùï
⇐)M∈QGF(R),dÚn3.3••3Ü0→M→F→N→0,¦F∈F(R),N∈
QGF(R),•ÄXeíÑã
0

0

0
//
M
0
//
M

//
M
00

//
0
0
//
M
0
//
F

//
L

//
0
N

N

00
3Ü0→M
00
→L→N→0þA^⇒)y²(ØŒL´[-Gorenstein²",2Š
âÚn3.3ÚÜ0→M
0
→F→L→0,ÏdŒ•M
0
∈QGF(R).
Ún3.5R´mvà‚,[-Gorenstein²"a'u†Ú††Ú‘µ4.
y²Ï•Üþȼf−⊗
R
−††ÚŒ†,K[-Gorenstein²"†Ú•´[-Gorenstein
²",¿… Šâ·K3.4(ii)•[-Gorenstein²"a´ÝŒ),¤±d©z[7,·K1.4]
Œ[-Gorenstein²"a'u†Ú‘µ4.
·K3.6R´mvà‚,0→M
0
→M→M
00
→0´áÜ,XJM
0
ÚM´[-
Gorenstein²",KM
00
´[-Gorenstein²"…=é?¿E∈QI(R),Tor
R
1
(E,M
00
)=0.
y²⇒)dÚn3.2w,Œy.
⇐)0→M
0
→M→M
00
→0´áÜ,Ù¥M
0
∈QGF(R),M∈QGF(R),K
0→M
00+
→M
+
→M
0+
→0Ü,¿…d·K3.4(i)Œ•M
+
∈QGI(R),M
0+
∈QGI(R).db
^‡•é?¿E∈QI(R),Ext
1
R
(E,Hom
Z
(M
00
,Q/Z))
∼
=
Hom
Z
(Tor
R
i
(E,M
00
),Q/Z))=0,qŠ
â©z[4,·K2.7(ii)]ŒM
00+
∈QGI(R),…Ï•R´mvà‚,¤±M
00
∈QGF(R).
4.[-Gorenstein²"‘ê
M´š"R-,n´šKê,M[-Gorenstein²"‘ê½ÂXe.
QGfd
R
(M)=inf{n|0→Q
n
→Q
n−1
→···→Q
1
→Q
0
→M→0Ü,é?¿0≤i≤n,
Q
i
∈QGF(R)},þãnØ•3ž,5½QGfd
R
(M)=∞,QGfd
R
(0)=−∞.
½n4.1R´mvà‚,M´[-Gorenstein²"‘êk•R-,n´šKê,K±e
^‡d.
(i)QGfd
R
(M)≤n.
(ii)i>nž,é?¿E∈QI(R),Tor
R
i
(E,M)=0.
(iii)?¿Ü
···→Q
n
→Q
n−1
→···→Q
1
→Q
0
→M→0,
DOI:10.12677/pm.2023.1351481444nØêÆ
"ùï
Ù¥i≥0ž,Q
i
´[-Gorenstein²",KkernelK
n
:=ker(Q
n−1
→Q
n−2
)´[-Gorenstein²
".
Ïd,QGfd
R
(M)=sup{m∈N
0
|∀E∈QI(R),Tor
R
m
(E,M)6=0}.
y²(i)⇒(ii)Ï•QGfd
R
(M)≤n,K•3Ü
0→Q
n
→Q
n−1
→···→Q
1
→Q
0
→M→0,
Ù¥é?¿0≤i≤n,Q
i
∈QGF(R).ÏL©)e¡áÜ
0→K
1
→Q
0
→M→0
Ú
0→K
i+1
→Q
i
→K
i
→0.
Ù¥K
0
:=M,K
1
:=ker(Q
0
→M),¿…é?¿2≤i≤n,K
i
:=ker(Q
i−1
→Q
i−2
).
E∈QI(R),i>nž,^¼fE⊗
R
−Š^uáÜ,dÚn3.2ŒTor
R
i
(E,M)
∼
=
Tor
R
i−n
(E,Q
n
)=0.
(ii)⇒(i)bQGfd
R
(M)=m<∞,K•3Ü
0→Q
m
→Q
m−1
→···→Q
1
→Q
0
→M→0,
¦é?¿0≤i≤m,Q
i
∈QGF(R).em≤n,(Jw,¤á.ebm>n,•ıeÜ
0→K
j
→Q
j−1
→···→Q
1
→Q
0
→M→0
Ú
0→Q
m
→Q
m−1
→···→Q
j+1
→Q
j
→K
j
→0,
Ù¥K
0
:=M,K
1
:=ker(Q
0
→M),¿…é?¿2≤j≤m,K
j
:=ker(Q
j−1
→Q
j−2
).a
q(i)⇒(ii)y²ŒTor
R
i
(E,K
n
)
∼
=
Tor
R
i+n
(E,M)=0,¿…é?¿i>0Ún<j≤m,
Tor
R
i
(E,K
j
)=0.d·K3.6Œ•áÜ
0→Q
m
→Q
m−1
→K
m−1
→0
¥,K
m−1
[-Gorenstein²",3Ù¦áÜþ-EdÚ½
0→K
m−1
→Q
m−2
→K
m−2
→0,
.
.
.
0→K
n+1
→Q
n
→K
n
→0,
ÏdŒíÑK
n
´[-Gorenstein²",lQGfd
R
(M)≤n.
DOI:10.12677/pm.2023.1351481445nØêÆ
"ùï
(ii)⇒(iii)•Äe¡Ü
···→Q
n
→Q
n−1
→···→Q
1
→Q
0
→M→0,
Ù¥é?¿i≥0,Q
i
∈QGF(R).½ÂK
n
:=ker(Q
n−1
→Q
n−2
),KkÜ
0→K
n
→Q
n−1
→···→Q
1
→Q
0
→M→0,
ÏdS0→M
+
→Q
+
0
→Q
+
1
···→Q
+
n−1
→K
+
n
→0´Ü,Ù¥é?¿i≥0,Q
+
i
∈
QGI(R).d^‡(ii)Œ•,é?¿E∈QI(R),
Ext
i
R
(E,Hom
Z
(M,Q/Z))
∼
=
Hom
Z
(Tor
R
i
(E,M),Q/Z))=0.
ÏdŠâ©z[4,·K2.10]K
+
n
∈QGI(R),qÏ•R´m và‚,KK
n
´[-Gorenstein²"
.
(iii)⇒(ii)•3Ü
0→K
n
→Q
n−1
→···→Q
1
→Q
0
→M→0,
Ù¥i≥0,Q
i
∈QGF(R),bK
n
∈QGF(R),òþãÜ©)•áÜ,E∈QI(R)ž,^
¼fE⊗
R
−•gŠ^áÜ,l$^‘ê=£{ŒÓªTor
R
i
(E,M)
∼
=
Tor
R
i−n
(E,K
n
)=
0,¤±é?¿E∈QI(R),i>nž,Tor
R
i
(E,M)=0.
ë•©z
[1]Auslander,M.andBridger,M.(1969)StableModuleTheory.MemoirsoftheAmericanMath-
ematicalSociety,94.https://doi.org/10.1090/memo/0094
[2]Enochs,E.E.andJenda,O.(1995)GorensteinInjectiveandProjectiveModules.Mathematis-
cheZeitschrift,220,611-633.https://doi.org/10.1007/BF02572634
[3]Enochs,E.E.,Jenda,O.andTorrecillas,B.(1993)GorensteinFlatModules.JournalofNanjing
University(NaturalSciences),10,1-9.
[4]Mashhad,F.M.A.(2022)Quasi-GorensteinProjectiveandQuasi-GorensteinInjectiveModules.
InternationalJournalofMathematics,33,Article2250086.
https://doi.org/10.1142/S0129167X22500860
[5]Fuchs,L.(1969)OnQuasi-InjectiveModules.TheAnnalidellaScuolaNormaleSuperioredi
Pisa,ClassediScienze,23,541-546.
[6]Enochs,E.E.andJenda,O.(2000)RelativeHomologicalAlgebra.In:DeGruyterExpositions
inMathematics,Vol.30,WalterdeGruyter,Berlin,NewYork.
[7]Henrik,H.(2004)GorensteinHomologicalDimensions.JournalofPureandAppliedAlgebra,
189,167-193.https://doi.org/10.1016/j.jpaa.2003.11.007
DOI:10.12677/pm.2023.1351481446nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.