设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(5),1456-1482
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135150
ž
m
•
6
P
Á
.
²
;
‡
A
*
Ñ
•
§
á
Ú
f
ooo
ŒŒŒ
AAA
§§§
ààà
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2023
c
4
23
F
¶
¹
^
F
Ï
µ
2023
c
5
24
F
¶
u
Ù
F
Ï
µ
2023
c
5
31
F
Á
‡
©
•
Ä
ä
k
ž
m
•
6
P
Á
Ø
²
;
‡
A
*
Ñ
•
§
§
š
‚
5
‘
÷
v
g
.
O
•
ž
§
3
ž
m
•
6
˜
m
H
1
0
(Ω)
×
L
2
µ
t
(
R
+
;
H
1
0
(Ω))
¥
•
§
)
•
ž
m
Ä
å
Æ1
•
"
3
#
n
Ø
µ
e
e
§
|
^
È
©
O
•{
±
9
©
)
E
â
)
·
½
5
Ú
K
5
§
?
y
²
ž
m
•
6
Û
á
Ú
f
•
3
5
"
'
…
c
²
;
‡
A
*
Ñ
•
§
§
ž
m
•
6
P
Á
Ø
§
·
½
5
§
ž
m
•
6
Û
á
Ú
f
§
•
3
5
AttractorsfortheClassicalReaction
DiffusionEquationwithTime-Dependent
MemoryKernel
YunaLi,XuanWang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.23
rd
,2023;accepted:May24
th
,2023;published:May31
st
,2023
Abstract
Inthispaper,weconsiderthelong-timedynamicalbehaviorofsolutionsfortheclas-
©
Ù
Ú
^
:
o
Œ
A
,
à
.
ž
m
•
6
P
Á
.
²
;
‡
A
*
Ñ
•
§
á
Ú
f
[J].
n
Ø
ê
Æ
,2023,13(5):1456-1482.
DOI:10.12677/pm.2023.135150
o
Œ
A
§
à
sicalreactiondiffusionequationwithtime-dependentmemorykernelwhennonlinear
term adheresto subcritical growthin thetime-dependent space
H
1
0
(Ω)
×
L
2
µ
t
(
R
+
;
H
1
0
(Ω))
.
Underthenewtheoricalframework,thewell-posednessandtheregularityoftheso-
lution,theexistenceofthetime-dependentglobalattractorsareprovedbyusingthe
delicateintegralestimationmethodanddecompositiontechnique.
Keywords
ClassicalReactionDiffusionEquation,QuadTime-DependentMemoryKernel,
Well-Posed-Ness,Time-DependentGlobalAttractors,Existence
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
©
ï
Ä
ä
k
ž
m
•
6
P
Á
Ø
²
;
‡
A
*
Ñ
•
§
Ä
å
X
Ú
)
•
ž
m
Ä
å
Æ1
•
∂
t
u
−
∆
u
−
Z
∞
0
k
t
(
s
)∆
u
(
t
−
s
)d
s
+
f
(
u
) =
g,
(
x,t
)
∈
Ω
×
(
τ,
+
∞
)
,
(1.1)
u
(
x,t
)
|
∂
Ω
= 0
,t
∈
(
τ,
+
∞
)
,u
(
x,τ
) =
u
τ
(
x,t
)
,x
∈
Ω
,t
∈
(
−∞
,τ
]
.
(1.2)
Ù
¥
Ω
⊂
R
3
•
‘
k
1
w
>
.
k
.
•
.
b
ž
m
•
6
¼
ê
k
t
(
s
)
´
š
K
,
à
,
Œ
Ú
.
¿
…
κ
(
t
)=
R
∞
0
µ
t
(
s
)d
s,
∀
s
∈
R
+
,t
∈
R
.
é
²
w
µ
t
(
s
) =
−
∂
s
κ
t
(
s
)
.
?
˜
Ú
,
b
N
(
t,s
)
7→
µ
t
(
s
) :
R
×
R
+
7→
R
+
.
÷
v
e
ã
^
‡
:
(H
1
)
é
u
?
¿
½
t
∈
R
,
N
s
7→
µ
t
(
s
)
´
š
K
,
š
O
,
ý
é
ë
Y
Œ
Ú
.
½
Â
κ
(
t
) =
Z
∞
0
µ
t
(
s
)d
s,
inf
t
∈
R
κ
(
t
)
>
0
.
(H
2
)
é
u
?
¿
τ
∈
R
,
•
3
˜
‡
ë
Y
¼
ê
K
τ
: [
τ,
∞
)
→
R
+
,
¦
µ
t
(
s
)
6
K
τ
(
t
)
µ
τ
(
s
)
,
∀
t
>
τ,a.e.s
∈
R
+
.
(H
3
)
é
u
z
˜
‡
½
s>
0,
N
t
7→
µ
t
(
s
)
é
u
¤
k
t
∈
R
´
Œ
‡
,
¿
…
é
u
?
¿
;
DOI:10.12677/pm.2023.1351501457
n
Ø
ê
Æ
o
Œ
A
§
à
8
K⊂
R
×
R
+
,
k
(
t,s
)
7→
µ
t
(
s
)
∈
L
∞
(
K
)
,
(
t,s
)
7→
∂
t
µ
t
(
s
)
∈
L
∞
(
K
)
.
(H
4
)
•
3
δ>
0
¦
∂
t
µ
t
(
s
)+
∂
s
µ
t
(
s
)+
δκ
(
t
)
µ
t
(
s
)
6
0
,
∀
t
∈
R
+
, a.e.s
∈
R
+
.
b
å
‘
g
∈
L
2
(Ω),
…
š
‚
5
‘
f
∈
C
1
(
R
)
÷
v
f
(0) = 0,
¿
…
÷
v
:
|
f
0
(
u
)
|
6
C
(1+
|
u
|
p
−
1
)
,
∀
u
∈
R
,f
0
(
u
)
>
C
1
,
(1
.
3)
Ù
¥
1
6
p
6
3
,C
1
>
0
,C
´
˜
‡
~
ê
.
¿
…
f
÷
v
Ñ
Ñ
5
^
‡
liminf
|
u
|→∞
f
0
(
u
)
>
−
λ
1
,
(1
.
4)
3ù
p
,
λ
1
>
0
´
î
‚
Dirichlet
Ž
f
1
˜
A
Š
,
A
=
−
∆
…
½
Â
•
D
(
A
)=
H
2
(Ω)
∩
H
1
0
(Ω).
w
,
,
Š
â
(1
.
4)
Œ
±
e
'
X
:
•
3
0
<θ<
1
Ú
~
ê
c
f
,
k
h
F
(
u
)
,
1
i
>
−
1
2
(1
−
θ
)
k
u
k
2
1
−
c
f
,
(1
.
5)
h
f
(
u
)
,u
i
>
h
F
(
u
)
,
1
i−
1
2
(1
−
θ
)
k
u
k
2
1
−
c
f
,
(1
.
6)
Ù
¥
F
(
u
) =
R
u
0
f
(
s
)d
s.
•
§
(1.1)
Ø
•
¹
P
Á
‘
ž
(
=
h
t
≡
0),
•
§
(1.1)
K
•
²
;
‡
A
*
Ñ
•
§
,
T
•
§
3
6
N
å
Æ
Ú
9
D
+
•
¥
k
X
2
•
A^
,
„
©
z
[1–3].
C
c
5
,
k
N
õ
Æ
ö
Ñ
3
l
¯
'
u
š
²
;
*
Ñ
•
§
)
•
ž
m
1
•
ï
Ä
[4–11]
9
ƒ
'
©
z
.
~
X
,
©
z
[5]
Š
ö3
š
‚
5
‘
•
g
.
•
ê
O
•
^
‡
e
,
y
²
š
²
;
*
Ñ
•
§
;
á
Ú
f
•
3
5
.
©
z
[6]
¥
,
3
g
£
œ
/
e
é
u
š
‚
5
‘
÷
v
.
•
ê
O
•
,
å
‘
á
u
˜
m
H
−
1
(Ω)
ž
,
?
Ø
Û
á
Ú
f
•
3
5
;
3
š
g
£
œ
/
e
,
å
‘
á
u
˜
m
L
2
b
(
R
;
L
2
(Ω))
ž
,
?
Ø
•
ê
á
Ú
f
Ú
˜
—
á
Ú
f
•
3
5
.
•
§
•
¹
ž
m
•
6
P
Á
‘
(
=
Ï
~
P
ò
P
Á
‘
,
P
Á
ؼ
ê
Ø
•
6
u
t
)
ž
, (1.1)
£
ã
9
6
3
P
ò
P
Á
K
•e
Ó
a
,
½
Ú
ˆ
•
Ó
5
Ê
5
9
D
N
¥
D
L
§
.
ù
«
Ü
¤
.
5
u
[12]Coleman
Ú
Gurtin
ï
á
®
²
•
<
2
•
É
‘
P
Á
9
6
n
Ø
µ
e
.
©
z
[8]
Š
ö3
å
‘
=
á
u
H
−
1
(Ω)
Ú
L
2
(Ω),
š
‚
5
‘
•
.
•
ê
O
•
ž
y
²
š
²
;
*
Ñ
•
§
Û
á
Ú
f
•
3
5
±
9
K
5
.
©
z
[9]
¥
,
š
‚
5
‘
f
÷
v
?
¿
õ
‘
ª
O
•
^
‡
ž
,
3
ÿ
À
˜
m
H
1
0
(Ω)
∩
H
2
(Ω)
×
L
2
µ
(
R
+
;
H
1
0
(Ω)
∩
H
2
(Ω))
¥y
²
r
á
Ú
f
•
3
5
.
•
§
•
¹
ž
m
•
6
P
Á
‘
(
= P
Á
‘
•
6
u
t
)
ž
,
L
«
Ê
5
á
Ê
5
‘
X
ž
m
6
²
¬
Å
ì
ž
”
,
=
Ñ
y
P
z
y–
,
X
“
,
‡
á
,
ù
¦
·
‚
ï
Ä
é
–
C
E
,
k
.
ž
m
•
6
P
Á
Ø
•
3
‰
O
‘
5
Ÿ
5
(
J
.
Ä
k
,
du
P
Á
ؼ
ê
•
6
u
ž
m
,
½
Â
C
þ
η
t
ž
m
ê
†
±
Ø
Ó
.
Ù
g
,
^u
¹
k
š
ž
m
•
6
P
Á
‘
•
§
²
;
•{
Ú
‡
©
Ø
ª
Ã
{
?
1
•
§
(1.1)
Ñ
Ñ
5
O
Ú
)
L
§
;
5
y
.
•
Ž
Ñ
±
þ
(
J
,
·
‚
/
Ï
©
z
[13,14]
*
:
,
3
#
DOI:10.12677/pm.2023.1351501458
n
Ø
ê
Æ
o
Œ
A
§
à
n
Ø
µ
e
e
,
|
^
È
©
O
•{
±
9
©
)
E
â
¤
õ
Ž
Ñ
O
†
y
²
L
§
¥
¢
Ÿ
5
J
K
,
)
·
½
5
,
?
y
²
ž
m
•
6
Û
á
Ú
f
•
3
5
.
3
‘
Ø
ã
¥
,
•
{
B
å
„
,
½
Â
C
•
?
¿
~
ê
.
©
(
X
e
:
©
3
1
!
¥
§
£
˜
ý
•
£
,
•
¹
˜
˜
m
½
Â
Ú
X
Ú
Ä
–
(
J
.
3
1
n
!
¥
,
y
²
ž
m
•
6
P
Á
.
²
;
‡
A
*
Ñ
•
§
)
·
½
5
Ú
K
5
.
3
1
o
!
¥
,
y
²
ž
m
•
6
P
Á
.
²
;
‡
A
*
Ñ
•
§
ž
m
•
6
Û
á
Ú
f
•
3
5
.
2.
ý
•
£
/
Ï
©
z
[14]
*
:
,
·
‚
½
Â
•
§
(1
.
1)
#
{
¤
C
þ
η
t
(
s
) =
(
R
s
0
u
(
t
−
r
)d
r,
0
<s
6
t
−
τ,
η
τ
(
s
−
t
+
τ
)+
R
t
−
τ
0
u
(
t
−
r
)d
r,s>t
−
τ.
(2
.
1)
-
µ
t
(
s
) =
−
∂
s
k
t
(
s
)
…
k
t
(
∞
) = 0,
K
¯
K
(1
.
1),
¯
K
(1
.
2)
Œ
±
=
z
•
X
Ú
∂
t
u
−
∆
u
−
R
∞
0
µ
t
(
s
)∆
η
t
(
s
)d
s
+
f
(
u
) =
g
.
(2
.
2)
ƒ
A
Ð
-
>
.
^
‡
•
u
(
x,t
) = 0
,x
∈
∂
Ω
,t>τ,
η
t
(
x,s
) = 0
,
(
x,s
)
∈
∂
Ω
×
R
+
,t>τ,
u
(
x,t
) =
u
τ
(
x,t
)
,x
∈
Ω
,t
6
τ,
η
τ
(
x,s
) =
η
τ
(
x,s
)
,
(
x,s
)
∈
Ω
×
R
+
.
(2
.
3)
Ù
¥
u
(
·
)
÷
v
±
e
^
‡
:
•
3
~
ê
R
Ú
6
δ
,
¦
Z
∞
0
e
−
%s
k∇
u
(
−
s
)
k
2
d
s
6
R
.
e
¡
ò
¦
^
Pata
Ú
Squassina[15]
¥
Î
Ò
,
A
=
−
∆
…
½
Â
•
D
(
A
) =
H
1
0
(Ω)
∩
H
2
(Ω).
•
Ä
Hilbert
;
i
\
˜
m
x
V
s
=
D
(
A
s
2
),
¿
D
ƒ
ƒ
A
S
È
Ú
‰
ê
h
u,v
i
s
=
h
A
s
2
u,A
s
2
v
i
,
k
u
k
s
=
k
A
s
2
u
k
,
∀
s
∈
R
,
∀
u,v
∈
D
(
A
s
2
)
,
Ù
¥
h·
,
·i
Ú
k·k
•
L
2
(Ω)
S
È
Ú
‰
ê
,
@
o
,
H
=
L
2
(Ω)
,V
1
=
H
1
0
(Ω)
,V
2
=
H
1
0
(Ω)
∩
H
2
(Ω).
w
,
,
é
u
?
¿
s
1
>s
2
,
k
;
i
\
D
(
A
s
1
2
)
→
D
(
A
s
2
2
),
±
9
é
u
¤
k
s
∈
[0
,
n
2
),
k
ë
Y
i
\
D
(
A
s
2
)
→
L
2
n
n
−
2
s
(Ω).
é
u
z
‡
½
ž
m
t
Ú
z
˜
‡
σ
∈
R
,
Š
â
P
Á
Ú
µ
t
(
·
)
b
,
^
L
2
µ
t
(
R
+
;
V
σ
)
L
«
Hilbert
DOI:10.12677/pm.2023.1351501459
n
Ø
ê
Æ
o
Œ
A
§
à
˜
m
,
½
Â
X
e
P
Á
˜
m
M
σ
t
=
L
2
µ
t
(
R
+
;
V
σ
) =
{
ξ
t
:
R
+
→
V
σ
|
Z
∞
0
µ
t
(
s
)
k
ξ
t
(
s
)
k
2
σ
d
s<
+
∞}
,
¿
D
ƒ
ƒ
A
S
È
Ú
‰
ê
h
η
t
,ξ
t
i
M
σ
t
=
Z
∞
0
µ
t
(
s
)
h
η
t
(
s
)
,ξ
t
(
s
)
i
σ
d
s,
k
ξ
t
k
2
M
σ
t
=
Z
∞
0
µ
t
(
s
)
k
ξ
t
(
s
)
k
2
σ
d
s.
y
3
·
‚
Ú
\
Hilbert
˜
m
x
H
σ
t
=
V
σ
−
1
×
M
σ
t
,
ƒ
A
‰
ê
k
z
k
2
H
σ
t
=
k
(
u,η
t
)
k
2
H
σ
t
=
k
u
k
2
σ
−
1
+
k
η
t
k
2
M
σ
t
.
A
O
/
,
H
t
=
H
0
t
.
Š
â
(H
2
),
é
u
?
¿
η
t
∈
M
σ
τ
…
z
‡
t
>
τ
,
k
η
t
k
2
M
σ
t
6
K
τ
(
t
)
k
η
t
k
2
M
σ
τ
,
(2
.
4)
…
k
ë
Y
i
\
,
M
σ
τ
→
M
σ
t
,
l
,
H
σ
τ
→H
σ
t
.
Š
^
3
M
σ
t
þ
‚
5
Ž
f
T
t
½
Â
X
e
T
t
η
t
=
−
∂
s
η
t
Ù
½
Â
•
D
(
T
t
) =
{
η
t
∈
M
σ
τ
|
∂
s
η
t
∈
M
σ
t
,η
t
(0) = 0
}
.
K
Š
â
(H
1
),
é
z
‡
½
t
,
¼
ê
s
7→
µ
t
(
s
)
´
A
??
Œ
‡
,
…
∂
s
µ
t
(
s
)
6
0.
a
'
[14],
·
‚
k
h
T
t
η
t
,η
t
i
M
σ
t
=
1
2
R
∞
0
∂
s
µ
t
(
s
)
k
η
t
(
s
)
k
2
σ
d
s
6
0
,
∀
η
t
∈
D
(
T
t
)
.
(2
.
5)
w
,
T
t
´
Ñ
Ñ
Ž
f
.
¯¢
þ
,
T
t
´
˜
m
M
σ
t
þ
m
²
£
Œ
+
Ã
¡
Ž
f
,
w
,
T
τ
⊂
T
t
.
(2
.
6)
…
{
T
t
}
t
>
τ
´
Š
‘
t
O
\
/
i
\
.
DOI:10.12677/pm.2023.1351501460
n
Ø
ê
Æ
o
Œ
A
§
à
d
(2
.
1)
ª
,
Œ
•
∂
t
η
t
(
s
) =
−
∂
s
η
t
(
s
)+
u
(
t
) =
T
t
η
t
+
u
(
t
)
.
(2
.
7)
e
¡
Ä
–
(
J
ò
^
5
y
²
¯
K
(2.2), (2.3)
é
A
)
;
5
ÚÑ
Ñ
5
.
Ú
n
2.1
[9,16]
X,B
Ú
Y
´
n
‡
Banach
˜
m
.
é
u
T>
0,
X
J
X
→
→
B
→
Y
,
…
W =
{
u
∈
L
p
([0
,T
];
X
)
|
∂
t
u
∈
L
r
([0
,T
];
Y
)
}
,r>
1
,
1
6
p<
∞
,
W
1
=
{
u
∈
L
∞
([0
,T
];
X
)
|
∂
t
u
∈
L
r
([0
,T
];
Y
)
}
,r>
1
.
@
o
,
W
→
→
L
p
([0
,T
];
B
)
,W
1
→
→
C
([0
,T
];
B
)
.
Ú
n
2.2
[3,13,17]
b
µ
∈
C
1
(
R
+
)
∩
L
1
(
R
+
)
´
˜
‡
š
K
¼
ê
,
¿
…
÷
v
:
X
J
•
3
s
0
∈
R
+
,
¦
é
u
¤
k
s
>
s
0
,
k
µ
(
s
)=0
¤
á
.
d
,
B
0
,B
1
,B
2
´
Banach
˜
m
,
Ù
¥
B
0
,B
1
´
g
‡
,
…
÷
v
B
0
→
→
B
1
→
B
2
.
X
J
C⊂
L
2
µ
(
R
+
;
B
1
)
÷
v
(i)
C
3
L
2
µ
(
R
;
B
0
)
∩
H
1
µ
(
R
+
;
B
2
)
k
.
;
(ii)sup
η
∈C
k
η
(
s
)
k
2
B
1
6
h
(
s
),
∀
s
∈
R
+
,
h
(
s
)
∈
L
1
µ
(
R
+
),
@
o
C
3
L
2
µ
(
R
+
;
B
1
)
ƒ
é
;
.
Ú
n
2.3
[18]
(
M,
d)
´
Ý
þ
˜
m
,
…
U
(
t,τ
)
´
M
¥
Lipschitz
ë
Y
Ä
L
§
,
=
é
u
·
~
ê
C
Ú
K
Ù
Õ
á
u
m
i
,τ
Ú
t
k
d(
U
(
t,τ
)
m
1
,U
(
t,τ
)
m
2
)
6
C
e
K
(
t
−
τ
)
d(
m
1
,m
2
)
,
é
˜
ν
1
,ν
2
>
0
Ú
L
1
,L
2
>
0,
k
dist
M
(
U
(
t,τ
)
M
1
,U
(
t,τ
)
M
2
)
6
L
1
e
−
ν
1
(
t
−
τ
)
,
dist
M
(
U
(
t,τ
)
M
2
,U
(
t,τ
)
M
3
)
6
L
2
e
−
ν
2
(
t
−
τ
)
,
@
o
dist
M
(
U
(
t,τ
)
M
1
,U
(
t,τ
)
M
3
)
6
L
e
−
ν
(
t
−
τ
)
,
Ù
¥
ν
=
ν
1
ν
2
K
+
ν
1
+
ν
2
…
L
=
CL
1
+
L
2
.
Ú
n
2.4
[5](
È
©
.
Gronwall
Ø
ª
)
τ
∈
R
´
½
, Λ:[
τ,
+
∞
)
→
R
´
˜
‡
ë
Y
¼
ê
,
DOI:10.12677/pm.2023.1351501461
n
Ø
ê
Æ
o
Œ
A
§
à
é
u
,
ε>
0
±
9
?
¿
b>a
>
τ
,
±
e
È
©
Ø
ª
¤
á
:
Λ(
b
)+2
ε
Z
b
a
Λ(
y
)d
y
6
Λ(
a
)+
Z
b
a
q
1
(
y
)Λ(
y
)d
y
+
Z
b
a
q
2
(
y
)d
y,
Ù
¥
q
1
,q
2
>
0
…
q
i
∈
L
1
loc
[
τ,
+
∞
)(
i
= 1
,
2)
÷
v
,
•
3
c
1
,c
2
>
0,
¦
Z
b
a
q
1
(
y
)d
y
6
ε
(
b
−
a
)+
c
1
,
sup
t
>
τ
Z
t
+1
t
q
2
(
y
)d
y
6
c
2
,
@
o
Λ(
t
)
6
e
c
1
|
Λ(
τ
)
|
e
−
ε
(
t
−
τ
)
+
c
2
e
ε
1
−
e
−
ε
,
∀
t
>
τ.
X
[7,9,11,19]
¥
¤
ã
,
·
‚
Ú
\
±
e
'
u
ž
m
•
6
Ä
å
X
Ú
V
g
Ú
Ä
–
(
J
,
^u
ï
Ä)
•
Ï
Ä
å
Æ
.
½
Â
2.5
X
t
´
˜
x
D
‰
˜
m
,
é
u
V
ë
ê
Ž
fx
{
U
(
t,τ
):
X
τ
→
X
t
,τ
6
t,τ
∈
R
}
e
÷
v
X
e
5
Ÿ
:
(i)
é
u
?
¿
τ
∈
R
,U
(
τ,τ
) =I
d
´
X
t
þ
ð
N
;
(ii)
é
u
?
¿
t
>
s
>
τ,τ
∈
R
,
k
U
(
t,s
)
U
(
s,τ
) =
U
(
t,τ
),
K
¡
U
(
t,τ
)
´
˜
‡
L
§
.
X
t
´
D
‰
˜
m
x
,
é
u
z
‡
t
∈
R
,
X
t
R
-
¥
d
e
ª
½
Â
:
B
t
(
R
) =
{
z
∈
X
t
|k
z
k
X
t
6
R
}
.
·
‚
^
dist
X
t
(
A,B
)
L
«
l
8
Ü
A
⊂
X
t
8
Ü
B
⊂
X
t
Hausdorff
Œ
å
l
:
dist
X
t
(
A,B
) = sup
x
∈
A
dist
X
t
(
x,B
) = sup
x
∈
A
inf
y
∈
B
k
x
−
y
k
X
t
.
½
Â
2.6
x
C
=
{
C
t
}
t
∈
R
¥
k
.
8
C
t
⊂
X
t
¡
•
˜
—
k
.
,
X
J
•
3
˜
‡
~
ê
R>
0,
¦
C
t
⊂
B
t
(
R
),
∀
t
∈
R
.
½
Â
2.7
˜
—
k
.
x
B
t
=
{
B
t
(
R
0
)
}
t
∈
R
¡
•
´
'
u
L
§
U
(
t,τ
)
ž
m
•
6
á
Â
8
,
X
J
é
u
z
‡
R>
0,
•
3
˜
‡
t
0
=
t
0
(
R
)
6
t
…
R
0
>
0
¦
τ
6
t
−
t
0
⇒
U
(
t,τ
)
B
τ
(
R
)
⊂
B
t
(
R
0
)
.
§
Pk
˜
‡
ž
m
•
6
á
Â
8
ž
,
K
¡
L
§
U
(
t,τ
)
´
Ñ
Ñ
.
½
Â
2.8
•
x
A
=
{
A
t
}
t
∈
R
,
X
J
A
÷
v
±
e
5
Ÿ
:
(i)
é
u
?
¿
t
∈
R
,
z
˜
‡
A
t
3
X
t
¥
Ñ
´
;
;
DOI:10.12677/pm.2023.1351501462
n
Ø
ê
Æ
o
Œ
A
§
à
(ii)
A
´
.
£
á
Ú
,
§
´
˜
—
k
.
,
¿
…
é
u
z
˜
‡
˜
—
k
.
8
x
C
=
{
C
t
}
t
∈
R
,
k
lim
τ
→−∞
dist
X
t
(
U
(
t,τ
)
C
τ
,A
t
) = 0;
¤
á
.
K
¡
§
´
'
u
L
§
U
(
t,τ
)
ž
m
•
6
á
Ú
f
.
½
Â
2.9
[8,19]
X
J
U
(
t,τ
)
´
ì
C;
,
=8
K
š
˜
,
K
=
{
K
=
{
K
t
}
t
∈
R
|
z
‡
K
t
3
X
t
¥
;
,
K
´
.
£
á
Ú
f
}
@
o
ž
m
•
6
á
Ú
f
A
•
3
…
k
A
=
{
A
t
}
t
∈
R
.
A
O
/
,
A
´
•
˜
.
½
Â
2.10
é
u
˜
‡
¼
ê
t
→
Z
(
t
),
…
Z
(
t
)
∈
X
t
´
L
§
U
(
t,τ
)
k
.
;
(CBT),
…
=
(i)sup
t
∈
R
k
Z
(
t
)
k
X
t
<
∞
;
(ii)
Z
(
t
) =
U
(
t,τ
)
Z
(
τ
)
,
∀
τ
6
t,τ
∈
R
.
½
Â
2.11
ž
m
•
6
á
Ú
f
A
=
{
A
t
}
t
∈
R
ØC
,
X
J
é
u
¤
k
τ
6
t
,
U
(
t,τ
)
A
τ
=
A
t
.
½
Â
2.12
[7,9,11]
X
J
ž
m
•
6
á
Ú
f
A
=
{
A
t
}
t
∈
R
´
ØC
,
@
o
§
•
¹L
§
U
(
t,τ
)
¤
k
k
.
;
8
Ü
CBT,
•
Ò
´
`
,
A
=
{
Z
|
t
→
Z
(
t
)
∈
X
t
¿
…
Z
(
t
)
´
L
§
U
(
t,τ
)
CBT
}
.
3.
)
·
½
5
Ú
K
5
•
)
Ñ
Ñ
O
Ú
·
½
5
,
·
‚
I
‡
y
²
±
e
Ð
Ú
(
J
.
Ú
n
3.1
Γ(
u,η
τ
) = 3(
t
−
τ
)
2
κ
(
τ
)
k
u
k
2
L
∞
([
τ,T
];
V
σ
)
+2
k
η
τ
k
2
M
σ
τ
.
@
o
,
·
‚
k
η
t
∈
M
σ
τ
⊂
M
σ
t
…
k
η
t
k
2
M
σ
τ
6
Γ(
u,η
τ
)
,
∀
t
∈
[
τ,T
]
,
…
k
η
t
k
2
M
σ
t
6
Γ(
u,η
τ
)
K
τ
(
t
)
∈
L
1
([
τ,T
])
.
Ú
n
3.2
X
J
η
τ
∈
D
(
T
τ
),
@
o
η
t
∈
D
(
T
τ
),
é
u
z
‡
t
∈
[
τ,T
],
η
t
∈
W
1
,
∞
([
τ,T
];
M
σ
τ
)
…
DOI:10.12677/pm.2023.1351501463
n
Ø
ê
Æ
o
Œ
A
§
à
Ø
ª
∂
t
η
t
=
T
τ
η
t
+
u
(
t
)
3
M
σ
τ
¥
¤
á
.
y
²
¦
^
η
τ
∈
D
(
T
τ
)
⊂
M
σ
τ
,
·
‚
∂
s
η
t
(
s
) =
u
(
t
−
s
)
,s
6
t
−
τ,
∂
s
η
τ
(
s
−
t
+
τ
)
,s>t
−
τ,
(3
.
1)
∂
t
η
t
(
s
) =
u
(
t
)
−
u
(
t
−
s
)
,s
6
t
−
τ,
u
(
t
)
−
∂
s
η
τ
(
s
−
t
+
τ
)
,s>t
−
τ.
(3
.
2)
d
(2
.
1)
ª
Œ
•
η
t
(0) = 0
.
d
,
Ï
•
µ
τ
(
·
)
´
š
O
,
…
η
τ
∈
D
(
T
τ
)
⊂
M
σ
τ
,
·
‚
k
k
∂
s
η
t
k
2
M
σ
τ
=
R
t
−
τ
0
µ
τ
(
s
)
k
u
(
t
−
s
)
k
2
σ
d
s
+
R
∞
t
−
τ
µ
τ
(
s
)
k
∂
s
η
τ
(
s
−
t
+
τ
)
k
2
σ
d
s
6
κ
(
τ
)
k
u
k
2
L
∞
([
τ,T
];
V
σ
)
+
k
∂
s
η
τ
k
2
M
σ
τ
.
(3
.
3)
Ï
d
,
∂
s
η
t
∈
M
σ
τ
,
=
,
η
t
∈
D
(
T
τ
).
†
þ
ã
O
ƒ
q
,
·
‚
k
esssup
t
∈
[
τ,T
]
k
∂
t
η
t
k
M
σ
τ
<
∞
.
A^
Ú
n
3
.
1
·
‚
u
y
η
t
∈
W
1
,
∞
([
τ,T
];
M
σ
τ
).
d
(3
.
1)
ª
Ú
(3
.
2)
ª
,
k
∂
t
η
t
=
T
τ
η
t
+
u
(
t
)
3
M
σ
τ
¤
á
.
5
º
3.3
du
M
σ
τ
⊂M
σ
t
,
d
(2
.
6)
ª
•
,
é
u
?
¿
½
t
,
k
∂
t
η
t
=
T
t
η
t
+
u
(
t
)(3
.
4)
3
˜
m
M
σ
t
þ
¤
á
.
5
º
3.4
η
∈
D
(
T
τ
),
d
(2
.
4)
Ú
(3
.
3)
ª
Œ
•
k
∂
s
η
t
k
2
M
σ
t
6
Ξ(
u,η
τ
)
K
τ
(
t
)
,
∀
t
∈
[
τ,T
]
,
(3
.
5)
Ù
¥
Ξ(
u,η
τ
) =
κ
(
τ
)
k
u
k
2
L
∞
([
τ,T
];
V
σ
)
+
k
∂
s
η
τ
k
2
M
σ
τ
.
Ú
n
3.5
b
u
∈
C
([
τ,T
];
V
σ
)
¿
…
η
τ
∈
C
1
(
R
+
,V
σ
)
∩
D
(
T
τ
).
@
o
,
é
u
¤
k
τ
6
a
6
b
6
T
,
DOI:10.12677/pm.2023.1351501464
n
Ø
ê
Æ
o
Œ
A
§
à
k
e
ã
Ø
ª
¤
á
:
k
η
b
k
2
M
σ
b
−
R
b
a
R
∞
0
(
∂
t
µ
t
(
s
)+
∂
s
µ
t
(
s
))
k
η
t
(
s
)
k
2
σ
d
s
d
t
6
k
η
a
k
2
M
σ
a
+2
R
b
a
h
u
(
t
)
,η
t
i
M
σ
t
d
t
.
(3
.
6)
Ú
n
3.6
é
u
¤
k
τ
6
a
6
b
6
T
,
e
ã
O
¤
á
k
η
b
k
2
M
σ
b
+
δ
R
b
a
κ
(
t
)
k
η
t
(
s
)
k
2
M
σ
t
d
s
d
t
6
k
η
b
k
2
M
σ
b
−
R
b
a
R
∞
0
(
∂
t
µ
t
(
s
)+
∂
s
µ
t
(
s
))
k
η
t
(
s
)
k
2
σ
d
s
d
t
6
k
η
a
k
2
M
σ
a
+2
R
b
a
h
u
(
t
)
,η
t
i
M
σ
t
d
t
.
(3
.
7)
½
Â
3.7
é
u
?
¿
T>τ
∈
R
,
g
∈
L
2
(Ω)
,
…
z
τ
= (
u
τ
,η
τ
)
∈H
1
τ
,
X
J
(i)
u
(
t
)
∈
L
∞
([
τ,T
];
V
1
),
η
t
∈
L
∞
([
τ,T
];
M
1
t
);
(ii)
¼
ê
η
t
÷
v
ª
(2
.
1) ;
(iii)
é
u
z
‡
φ
∈
V
1
…
a.e.
t
∈
[
τ,T
],
h
∂
t
u,φ
i
+
h
u,φ
i
1
+
Z
∞
0
µ
t
(
s
)
h
η
t
(
s
)
,φ
i
1
d
s
+
h
f
(
u
)
,φ
i
=
h
g,φ
i
.
…
¡
z
(
t
) = (
u
(
t
)
,η
t
)
´
¯
K
(2.2), (2.3)
3
«
m
[
τ,T
]
þ
f
)
.
½
n
3.8
(
·
½
5
Ú
K
5
)
(1
.
3), (1
.
4)
ª
¤
á
,
…
g
∈
L
2
(Ω).
(H
1
)-(H
4
)
¤
á
ž
,
é
z
‡
T>τ
∈
R
,
Ð
Š
z
(
τ
)
∈H
1
τ
…
k
z
(
τ
)
k
H
1
τ
6
R
1
,
K3
«
m
[
τ,T
]
¯
K
(2.2), (2.3)
•
3
•
˜
f
)
z
(
t
) = (
u
(
t
)
,η
t
),
÷
v
sup
t
>
τ
k
z
(
t
)
k
2
H
1
t
+
Z
t
τ
k
u
(
r
)
k
2
dr
+
Z
t
τ
κ
(
r
)
k
η
r
k
2
M
1
r
d
r
+
Z
t
τ
k
∂
t
u
(
r
)
k
2
1
d
r
6
Q,
?
˜
Ú
,(i)
Ð
Š
z
(
τ
)
∈H
2
τ
…
k
z
(
τ
)
k
H
2
τ
6
R
2
,
K3
«
m
[
τ,T
]
þ
,
•
3
r
)
,
k
sup
t
>
τ
k
z
(
t
)
k
2
H
2
t
+
Z
t
τ
k
u
(
r
)
k
2
2
dr
+
Z
t
τ
κ
(
r
)
k
η
r
k
2
M
2
r
d
r
+
Z
t
τ
k
∂
t
u
(
r
)
k
2
1
d
r
6
¯
Q,
¤
á
.(ii)
•
3
S
{
z
n
(
τ
)
}∈H
2
τ
,
¦
z
n
(
τ
)
→
z
(
τ
)
∈H
1
τ
,
Ð
Š
z
(
τ
)
∈H
1
τ
…
k
z
(
τ
)
k
H
1
τ
6
R
1
,
K3
«
m
[
τ,T
]
þ
,
k
sup
t
>
τ
k
z
(
t
)
k
2
H
1
t
+
Z
t
τ
k
u
(
r
)
k
2
dr
+
Z
t
τ
κ
(
r
)
k
η
r
k
2
M
1
r
d
r
+
Z
t
τ
k
∂
t
u
(
r
)
k
2
1
d
r
6
Q,
ù
p
R
1
Ú
R
2
þ
•
~
ê
,
Q
= max
{
Q
0
,Q
3
,Q
4
}
.
¯
Q
= max
{
¯
Q
0
,
¯
Q
3
,
¯
Q
4
}
.
d
,
k
z
1
(
t
)
−
z
2
(
t
)
k
2
H
1
t
6
C
e
C
(
R,λ
1
)(
t
−
τ
)
k
z
1
(
τ
)
−
z
2
(
τ
)
k
2
H
1
τ
, t
∈
[
τ,T
]
,
ù
p
z
1
(
t
)
,z
2
(
t
)
´
¯
K
(2.2), (2.3)
ü
‡
)
,
Ð
Š
z
1
τ
= (
u
1
τ
,η
1
τ
)
,z
2
τ
= (
u
2
τ
,η
2
τ
).
DOI:10.12677/pm.2023.1351501465
n
Ø
ê
Æ
o
Œ
A
§
à
y
²
ò
•
§
(2
.
2)
¦
±
u
,
·
‚
k
d
d
t
(
k
u
k
2
)+2
k
u
k
2
1
+2
h
u,η
t
i
M
1
t
+2
h
f
(
u
)
,u
i−
2
h
g,u
i
= 0
.
(3
.
8)
Š
â
(1
.
4)
ª
,
·
‚
k
−
2
h
f
(
u
)
,u
i
6
2(1
−
θ
)
k
u
k
2
1
+4
c
f
,
ù
p
,
θ
∈
(0
,
1).
N
´
2
h
g,u
i
6
θ
k
u
k
2
1
+
1
λ
1
θ
k
g
k
2
.
·
‚
½
Â
N
(
t
) =
k
u
k
2
.
@
o
d
d
t
N
(
t
)+
θ
k
u
k
2
1
+2
h
u,η
t
i
M
1
t
6
1
λ
1
θ
k
g
k
2
+4
c
f
:=
Q
0
.
(3
.
9)
é
(3
.
9)
ª
3
[
τ,t
]
þ
È
©
,
·
‚
k
N
(
t
)+
θ
R
t
τ
k
u
(
r
)
k
2
1
d
r
+2
R
t
τ
h
u,η
r
i
M
1
r
d
r
6
N
(
τ
)+
Q
0
(
t
−
τ
)
,
∀
t
>
τ.
(3
.
10)
A^
½
n
3
.
6,
·
‚
k
N
(
t
)+
k
η
t
k
2
M
1
t
+
θ
R
t
τ
k
u
(
r
)
k
2
1
d
r
−
R
t
τ
R
∞
0
(
∂
t
µ
t
(
s
)+
∂
s
µ
t
(
s
))
k
η
r
(
s
)
k
2
1
d
s
d
r
6
N
(
τ
)+
k
η
τ
k
2
M
1
τ
+
Q
0
(
t
−
τ
)
,
∀
t
>
τ.
.
½
Â
N
(
t
) =
N
(
t
)+
k
η
t
k
2
M
1
t
.
@
o
k
z
(
t
)
k
2
H
1
t
6
N
(
t
)
6
(1+
1
λ
1
)
k
z
(
t
)
k
2
H
1
t
.
(3
.
11)
Ï
d
,
N
(
t
)+
θ
R
t
τ
k
u
(
r
)
k
2
1
d
r
−
R
t
τ
R
∞
0
(
∂
t
µ
t
(
s
)+
∂
s
µ
t
(
s
))
k
η
r
(
s
)
k
2
1
d
s
d
r
6
N
(
τ
)+
Q
0
(
t
−
τ
)
.
(3
.
12)
¿
›
X
,
sup
t
>
τ
k
z
(
t
)
k
2
H
1
t
+
R
t
τ
k
u
(
r
)
k
2
1
d
r
+
R
t
τ
κ
(
r
)
k
η
r
k
2
M
1
r
d
r
6
C
(
R,T,
k
g
k
,θ,δ,λ
1
,c
f
) :=
Q
1
.
(3
.
13)
a
q
/
sup
t
>
τ
k
z
(
t
)
k
2
H
2
t
+
R
t
τ
k
u
(
r
)
k
2
2
d
r
+
R
t
τ
κ
(
r
)
k
η
r
k
2
M
2
r
d
r
6
C
(
R,T,
k
g
k
,θ,δ,λ
1
,c
f
) :=
¯
Q
.
(3
.
14)
DOI:10.12677/pm.2023.1351501466
n
Ø
ê
Æ
o
Œ
A
§
à
Ð
Š
z
(
τ
)
∈H
2
τ
ž
,
ò
•
§
(2
.
2)
¦
±
−
∆
u
,
·
‚
k
d
d
t
(
k
u
k
2
1
)+2
k
u
k
2
2
+2
h
u,η
t
i
M
2
t
+2
h
f
(
u
)
,
−
∆
u
i−
2
h
g,
−
∆
u
i
= 0
.
(3
.
15)
d
(1
.
3)
ª
,
·
‚
k
−
2
h
f
(
u
)
,
−
∆
u
i
=
−
2
R
Ω
f
0
(
u
)
|∇
u
|
2
d
x
6
2
C
1
k
u
k
2
1
.
(3
.
16)
w
,
,
2
h
g,
−
∆
u
i
6
k
u
k
2
2
+
k
g
k
2
.
½
Â
N
1
(
t
) =
k
u
k
2
1
.
@
o
d
d
t
N
1
(
t
)+
k
u
k
2
2
+2
h
u,η
t
i
M
2
t
6
2
C
1
k
u
k
2
1
+
k
g
k
2
.
(3
.
17)
é
(3
.
17)
ª
3
[
τ,t
]
þ
È
©
,
·
‚
k
N
1
(
t
)+
R
t
τ
k
u
k
2
2
d
r
+2
R
t
τ
h
u,η
r
i
M
2
r
d
r
6
N
1
(
τ
)+2
C
1
R
t
τ
k
u
(
r
)
k
2
1
d
r
+
k
g
k
2
(
t
−
τ
)
.
(3
.
18)
du
½
n
3
.
6,
·
‚
N
1
(
t
)+
R
t
τ
k
u
k
2
2
d
r
+
k
η
t
k
2
M
2
t
+
δ
R
t
τ
κ
(
r
)
k
η
r
k
2
M
2
r
d
r
6
N
1
(
τ
)+
k
η
τ
k
2
M
2
τ
+2
C
1
R
t
τ
k
u
(
r
)
k
2
1
d
r
+
k
g
k
2
(
t
−
τ
)
,
∀
t
>
τ.
(3
.
19)
½
Â
N
1
(
t
) =
N
1
(
t
)+
k
η
t
k
2
M
2
t
.
@
o
k
z
(
t
)
k
2
H
2
t
6
N
1
(
t
)
6
(1+
1
λ
1
)
k
z
(
t
)
k
2
H
2
t
.
Ï
d
,
N
1
(
t
)+
Z
t
τ
k
u
k
2
2
d
r
+
δ
Z
t
τ
κ
(
r
)
k
η
r
k
2
M
2
r
d
r
6
N
1
(
τ
)+2
C
1
Z
t
τ
k
u
(
s
)
k
2
1
d
s
+
k
g
k
2
(
t
−
τ
)
,
∀
t
>
τ.
A^
Gronwall
Ø
ª
,
·
‚
í
ä
Ñ
sup
t
>
τ
k
z
(
t
)
k
2
H
2
t
+
R
t
τ
k
u
k
2
2
d
r
+
R
t
τ
κ
(
r
)
k
η
r
k
2
M
2
r
d
r
6
C
(
k
z
(
τ
)
k
H
2
τ
,T,
k
g
k
,θ,δ,λ
1
,C
1
,c
f
) :=
Q
2
.
(3
.
20)
ò
•
§
(2
.
2)
¦
±
∂
t
u
DOI:10.12677/pm.2023.1351501467
n
Ø
ê
Æ
o
Œ
A
§
à
k
∂
t
u
k
2
=
−h
u,∂
t
u
i−
Z
∞
0
µ
t
(
s
)
h
∆
η
t
(
s
)
,∂
t
u
i
d
s
−h
f
(
u
)
,∂
t
u
i
+
h
g,∂
t
u
i
.
d
ª
(1
.
3),
·
‚
k
|h
f
(
u
)
,∂
t
u
i|
6
k
f
(
u
)
kk
∂
t
u
k
6
C
(1+
k
u
(
t
)
k
p
1
)
k
∂
t
u
k
.
d
(H
1
)
Œ
−
Z
∞
0
µ
t
(
s
)
h
∆
η
t
(
s
)
,∂
t
u
i
d
s
6
k
∂
t
u
k
Z
∞
0
µ
t
(
s
)
k
∆
η
t
(
s
)
k
d
s
6
k
∂
t
u
k
Z
∞
0
µ
t
(
s
)d
s
1
2
Z
∞
0
µ
t
(
s
)
k
η
t
(
s
)
k
2
2
d
s
1
2
6
k
∂
t
u
k
p
κ
(
t
)
k
η
t
k
M
2
t
.
@
o
k
∂
t
u
k
2
6
C
(
k
u
(
t
)
k
2
+1+
k
u
(
t
)
k
p
1
+
p
κ
(
t
)
k
η
t
k
M
2
t
+
k
g
k
)
k
∂
t
u
k
6
C
(1+
Q
1
2
0
+
Q
p
2
1
+
p
κ
(
t
)
k
η
t
k
M
2
t
+
k
g
k
)
k
∂
t
u
k
6
1
2
k
∂
t
u
k
2
1
+
C
(
R,T,c
f
,
k
g
k
,θ,δ,λ
1
)(1+
κ
(
t
)
k
η
t
k
2
M
2
t
)
=
1
2
k
∂
t
u
k
2
+
Q
3
(1+
κ
(
t
)
k
η
t
k
2
M
2
t
)
,
∀
t
∈
[
τ,T
]
.
(3
.
21)
Ï
d
,
R
t
τ
k
∂
t
u
(
s
)
k
2
d
s
6
2
Q
3
(1+
R
t
τ
κ
(
s
)
k
η
s
k
2
M
2
s
d
s
)
6
Q
4
.
(3
.
22)
{
w
n
}
´
L
2
(Ω)
I
O
Ä
,
•
3
V
1
¥
I
O
,
¿
…
−
∆
w
j
=
λ
j
w
j
,j
= 1
,
2
,
···
.
{
ζ
n
}
´
L
2
µ
t
(
R
+
;
V
1
)
I
O
Ä
,
•
3
L
2
µ
t
(
R
+
;
V
1
)
¥
I
O
,
¿
…
−
∆
ζ
j
=
λ
j
ζ
j
,j
=1
,
2
,
···
.
é
u
z
‡
n
∈
N
,
k
•
‘
f
˜
m
½
Â
X
e
:
H
n
= span
{
w
1
,
···
,w
n
}⊂
V
1
,M
n
= span
{
ζ
1
,
···
,ζ
n
}⊂
L
2
µ
t
(
R
+
;
V
1
)
.
P
n
:
V
1
→
H
n
L
«
3
H
n
þ
Ý
K
,
Q
n
:
L
2
µ
t
(
R
+
;
V
1
)
→
M
n
L
«
3
M
n
þ
Ý
K
.
Ð
©
^
‡
z
τ
= (
u
τ
,η
τ
)
C
q
u
˜
‡
S
{
z
τ
n
= (
u
τ
n
,η
τ
n
)
}⊂H
2
t
,
Ù
¥
u
τ
n
=
P
n
u
τ
→
u
τ
in
V
1
,
(3
.
23)
η
τ
n
=
Q
n
η
τ
→
η
τ
in
M
1
t
.
(3
.
24)
é
z
‡
n
∈
N
,
z
n
= (
u
n
,η
t
n
)
•¯
K
(2.2), (2.3)
%
C)
.
Ù
¥
u
n
= Σ
n
j
=1
T
n
j
(
t
)
w
j
,
T
n
j
∈
C
1
([
τ,T
])
¿
…
η
t
n
=Σ
n
j
=1
Λ
n
j
(
t
)
ζ
j
, Λ
n
j
∈
C
1
([
τ,T
]).
¤
±
é
z
‡
Á
¼
ê
ψ
∈
H
n
,
¿
…
z
‡
t
∈
[
τ,T
],
z
n
= (
u
n
,η
t
n
)
)û
e
ã
¯
K
:
h
∂
t
u
n
,ψ
i
+
h
u
n
,ψ
i
1
+
R
∞
0
µ
t
(
s
)
h
η
t
n
(
s
)
,ψ
i
1
d
s
+
h
f
(
u
n
)
,ψ
i
=
h
g,ψ
i
,
(3
.
25)
DOI:10.12677/pm.2023.1351501468
n
Ø
ê
Æ
o
Œ
A
§
à
¿
…
η
t
n
(
s
) =
R
s
0
u
n
(
t
−
r
)d
r,
0
<s
6
t
−
τ,
η
τ
n
(
s
−
t
+
τ
)+
R
t
−
τ
0
u
n
(
t
−
r
)d
r,s>t
−
τ.
(3
.
26)
b
ψ
∈
H
m
´
½
.
@
o
é
z
‡
n
>
m
,
·
‚
k
(3
.
25)
ª
¤
á
.
‰
(3.25)
ª
¦
±
ϕ
∈
C
∞
0
([
τ,T
])
¿
…
3
[
τ,T
]
þ
'
u
(3
.
25)
ª
?
1
È
©
,
·
‚
u
y
R
T
τ
ϕ
h
∂
t
u
n
(
r
)
,ψ
i
d
r
+
R
T
τ
ϕ
h
u
n
(
r
)
,ψ
i
1
d
r
+
R
T
τ
ϕ
R
∞
0
µ
r
(
s
)
h
η
r
n
(
s
)
,ψ
i
1
d
s
d
r
+
R
T
τ
ϕ
h
f
(
u
n
)
,ψ
i
d
r
=
R
T
τ
ϕ
h
g,ψ
i
d
r.
(3
.
27)
é
²
w
,
S
{
z
n
}
,
O
Š
(3
.
13), (3
.
20),(3
.
22)
´
¤
á
.
@
o
,
∂
t
u
n
3
L
2
([
τ,T
];
H
)
k
.
;
u
n
3
L
∞
([
τ,T
];
V
2
)
k
.
;
u
n
3
L
2
([
τ,T
];
V
2
)
k
.
;
η
t
n
3
L
∞
([
τ,T
];
M
2
t
)
k
.
.
Ï
•
k
f
(
u
n
)
k
L
1+
1
p
6
C
(1+
k
u
n
k
p
1
)
6
C
,
·
‚
í
ä
Ñ
f
(
u
n
)
3
L
1+
1
p
(Ω)
k
.
.
|
^
Galerkin
%
C)
z
n
= (
u
n
,η
t
n
),
·
‚
•
•
3
|
z
= (
u,η
t
),
¦
(
7
‡
ž
f
)
∂
t
u
n
→
∂
t
u
†
L
2
([
τ,T
];
H
1
)
f
Â
ñ
;(3.28)
u
n
→
u
†
L
∞
([
τ,T
];
V
2
)
f
∗
Â
ñ
;(3.29)
u
n
→
u
†
L
2
([
τ,T
];
V
2
)
f
Â
ñ
;(3.30)
η
t
n
→
q
t
†
L
∞
([
τ,T
];
M
2
t
)
f
∗
Â
ñ
;(3.31)
f
(
u
n
)
→
f
(
u
)
†
L
1+
1
p
(Ω)
f
Â
ñ
.
(3.32)
A^
Ú
n
2
.
1,
·
‚
Œ
±
l
(3
.
28)
Ú
(3
.
29)
¥
¼
u
n
→
u
†
C
([
τ,T
];
V
1
)
,
(3.33)
¿
…
Å
:
Â
ñ
DOI:10.12677/pm.2023.1351501469
n
Ø
ê
Æ
o
Œ
A
§
à
u
n
(
x,t
)
→
u
(
x,t
) a.e.
†
Ω
×
[
τ,T
]
.
Š
â
f
ë
Y5
,
Œ
f
(
u
n
(
x,t
))
→
f
(
u
(
x,t
))a.e.
†
Ω
×
[
τ,T
]
•
´
¤
á
.
|
^
(3
.
28)
Ú
(3
.
30)
ª
,
·
‚
Œ
±
N
´
/
(3
.
27)
†
à1
˜
‘
1
‘
Â
ñ
5
.
·
‚
ò
?
n
Ù
{
ü
‘
.
Ï
•
ψ
∈
H
n
⊂
V
1
,
é
N
´
ψ
∈
P
n
L
p
+1
(Ω).
Ï
d
,
Š
â
(3
.
32)
ª
,
Œ
h
f
(
u
n
)
−
f
(
u
)
,ψ
i
d
r
→
0
¤
á
.
du
f
(
u
n
)
Ú
f
(
u
)
3
L
1+
1
p
(Ω)
¥
k
.
5
,
A^
›
›
Â
ñ
½
n
,
·
‚
í
ä
Ñ
Z
T
τ
ϕ
h
f
(
u
n
)
−
f
(
u
)
,ψ
i
d
r
→
0
.
·
‚
Œ
±
y
²
ù
‡
Â
ñ
R
T
τ
ϕ
R
∞
0
µ
r
(
s
)
h
η
r
n
(
s
)
,ψ
i
1
d
s
d
r
.
•
,
·
‚
¯
η
τ
n
=
η
τ
n
−
η
τ
,
¯
u
τ
n
=
u
τ
n
−
u
τ
,
é
z
‡
t
∈
[
τ,T
]
,
¯
η
t
n
=
η
t
n
−
η
t
,
¯
u
n
(
t
) =
u
n
(
t
)
−
u
(
t
)
.
•
Ä
(H
2
)
¿
¦
^
¯
η
t
n
(
s
) =
R
s
0
¯
u
n
(
t
−
ζ
)d
ζ,
0
<s
6
t
−
τ,
¯
η
τ
n
(
s
−
t
+
τ
)+
R
t
−
τ
0
¯
u
n
(
t
−
ζ
)d
ζ,s>t
−
τ,
·
‚
k
k
¯
η
t
n
k
2
M
1
t
6
K
τ
(
t
)
k
¯
η
t
n
k
2
M
1
τ
=
C
(
T
)(
Z
t
−
τ
0
µ
τ
(
s
)
k
Z
s
0
¯
u
n
(
t
−
ζ
)d
ζ
k
2
1
d
s
+
Z
∞
t
−
τ
µ
τ
(
s
)
k
¯
η
τ
n
(
s
−
t
+
τ
)+
Z
t
−
τ
0
¯
u
n
(
t
−
ζ
)d
ζ
k
2
1
d
s
)
6
C
(
T
)(3(
T
−
τ
)
2
k
¯
u
n
k
2
C
([
τ,T
];
V
1
)
Z
∞
0
µ
τ
(
s
)d
s
+2
Z
∞
0
µ
τ
(
s
+
t
−
τ
)
k
¯
η
τ
n
(
s
)
k
2
1
d
s
)
6
C
(
T
)(3(
T
−
τ
)
2
k
¯
u
n
k
2
C
([
τ,T
];
V
1
)
κ
(
τ
)+2
k
¯
η
τ
n
k
2
M
1
τ
)
→
0
,
∀
t
∈
[
τ,T
]
.
du
4
•
•
˜
5
,
·
‚
q
t
=
η
t
.
DOI:10.12677/pm.2023.1351501470
n
Ø
ê
Æ
o
Œ
A
§
à
w
,
,
Z
∞
0
µ
t
(
s
)
h
¯
η
t
n
(
s
)
,ψ
i
1
d
s
=
Z
t
−
τ
0
µ
t
(
s
)
h
Z
s
0
¯
u
n
(
t
−
ζ
)d
ζ,ψ
i
1
d
s
+
Z
∞
t
−
τ
µ
t
(
s
)
h
¯
η
τ
n
(
s
−
t
+
τ
)
,ψ
i
1
d
s
+
Z
∞
t
−
τ
µ
t
(
s
)
h
Z
t
−
τ
0
¯
u
n
(
t
−
ζ
)d
ζ,ψ
i
1
d
s
=
Z
t
−
τ
0
µ
t
(
s
)
Z
s
0
h
¯
u
n
(
t
−
ζ
)
,ψ
i
1
d
ζ
d
s
+
Z
∞
0
µ
t
(
s
+
t
−
τ
)
h
¯
η
τ
n
(
s
)
,ψ
i
1
d
s
+
Z
∞
t
−
τ
µ
t
(
s
)
s
Z
t
τ
h
¯
u
n
(
ζ
)
,ψ
i
1
d
ζ
d
s.
2
g
¦
^
(H
2
),
·
‚
Z
t
−
τ
0
µ
t
(
s
)
Z
s
0
h
¯
u
n
(
t
−
ζ
)
,ψ
i
1
d
ζ
d
s
6
Z
t
−
τ
0
µ
t
(
s
)
s
Z
s
0
k
¯
u
n
(
t
−
ζ
)
k
1
k
ψ
k
1
d
ζ
d
s
6
k
¯
u
n
k
C
([
τ,T
];
V
1
)
k
ψ
k
1
(
T
−
τ
)
2
K
τ
(
t
)
κ
(
τ
)
→
0
,a.e.t
∈
[
τ,T
]
,
Z
∞
t
−
τ
µ
t
(
s
)
Z
t
τ
h
¯
u
n
(
ζ
)
,ψ
i
1
d
ζ
d
s
6
Z
∞
t
−
τ
µ
t
(
s
)
s
Z
t
τ
k
¯
u
n
(
ζ
)
k
1
k
ψ
k
1
d
ζ
d
s
6
k
¯
u
n
k
C
([
τ,T
];
V
1
)
k
ψ
k
1
(
T
−
τ
)
2
K
τ
(
t
)
κ
(
τ
)
→
0
,a.e.t
∈
[
τ,T
]
,
Z
∞
0
µ
t
(
s
+
t
−
τ
)
h
¯
η
τ
n
(
s
)
,ψ
i
1
d
s
6
k
ψ
k
1
K
τ
(
t
)
p
κ
(
τ
)
k
¯
η
τ
n
k
M
1
τ
→
0
,a.e.t
∈
[
τ,T
]
.
(
J
,
lim
n
→∞
Z
∞
0
µ
t
(
s
)
h
¯
η
t
n
(
s
)
,ψ
i
1
d
s
= 0
,a.e.t
∈
[
τ,T
]
.
¿
…
Z
∞
0
µ
t
(
s
)
h
¯
η
t
n
(
s
)
,ψ
i
1
d
s
6
Z
∞
0
µ
t
(
s
)
k
¯
η
t
n
(
s
)
k
1
k
ψ
k
1
d
s
6
k
ψ
k
1
p
K
τ
(
t
)
κ
(
τ
)
k
¯
η
t
n
k
M
1
t
∈
L
1
([
τ,T
])
.
A^
Lebesgue
›
›
Â
ñ
½
n
,
Œ
lim
n
→∞
Z
T
τ
ϕ
Z
∞
0
µ
r
(
s
)
h
¯
η
r
n
(
s
)
,ψ
i
1
d
s
d
r
= 0
.
DOI:10.12677/pm.2023.1351501471
n
Ø
ê
Æ
o
Œ
A
§
à
•
,
·
‚
¯
K
(2
.
2)
Ú
(2
.
3)
f
)
z
= (
u,η
t
).
y
3
,
·
‚
y
²
f
)
'
u
Ð
Š
ë
Y
•
6
5
,
•
=
•
˜
5
.
b
z
1
(
t
) = (
u
1
(
t
)
,η
t
1
)
,z
2
(
t
) = (
u
2
(
t
)
,η
t
2
)
´
¯
K
(2.2)
Ú
(2.3)
3
[
τ,T
]
þ
ü
‡
f
)
.
@
o
¯
z
(
t
) =
z
1
(
t
)
−
z
2
(
t
) = (¯
u
(
t
)
,
¯
η
t
)
÷
v
∂
t
¯
u
+
A
¯
u
+
R
∞
0
µ
t
(
s
)
A
¯
η
t
(
s
)d
s
=
−
f
(
u
1
)+
f
(
u
2
)
,
(3
.
34)
Ù
¥
¯
η
t
(
s
) =
R
s
0
¯
u
(
t
−
r
)d
r,s
6
t
−
τ,
¯
η
τ
(
s
−
t
+
τ
)+
R
t
−
τ
0
¯
u
(
t
−
r
)d
r,s>t
−
τ.
(3
.
35)
‰
(3
.
35)
¦
±
¯
u
,
·
‚
k
d
d
t
F
(
t
)+2
Z
∞
0
µ
t
(
s
)
h
¯
η
t
(
s
)
,
¯
u
(
t
)
i
1
d
s
=
−
2
k
¯
u
k
2
1
−
2
h
f
(
u
1
)
−
f
(
u
2
)
,
¯
u
(
t
)
i
6
−
2
λ
1
k
¯
u
k
2
+
C
(1+
k
u
1
k
p
−
1
L
p
+1
+
k
u
2
k
p
−
1
L
p
+1
)
k
¯
u
k
2
L
p
+1
6
−
2
λ
1
k
¯
u
k
2
+
C
(1+
k
u
1
k
p
−
1
1
+
k
u
2
k
p
−
1
1
)
k
¯
u
k
2
1
6
C
(
R,λ
1
)
F
(
t
)
,t
∈
[
τ,T
]
,
Ù
¥
F
(
t
) = (
k
¯
u
k
2
).
3
[
τ,t
]
þ
È
©
,
·
‚
u
y
F
(
t
)+2
R
t
τ
h
¯
u
(
y
)
,
¯
η
y
i
M
1
y
d
y
6
F
(
τ
)+
C
(
R,λ
1
)
R
t
τ
F
(
y
)d
y, t
∈
[
τ,T
]
.
(3
.
36)
Š
â
½
n
3
.
6,
·
‚
•
k
¯
η
t
k
2
M
1
t
+
δ
R
t
τ
κ
(
y
)
k
¯
η
y
(
s
)
k
2
M
1
y
d
y
6
k
¯
η
τ
k
2
M
1
τ
+2
R
t
τ
h
¯
u,
¯
η
y
i
M
1
y
d
y.
(3
.
37)
F
(
t
) =
F
(
t
)+
k
¯
η
t
k
2
M
1
t
,
·
‚
k
k
¯
z
(
t
)
k
2
H
1
t
6
F
(
t
)
6
C
k
¯
z
(
t
)
k
2
H
1
t
.
(
Ü
(3
.
36)
Ú
(3
.
37),
·
‚
k
F
(
t
)
6
F
(
τ
)+
C
(
R,λ
1
)
Z
t
τ
F
(
y
)d
y.
DOI:10.12677/pm.2023.1351501472
n
Ø
ê
Æ
o
Œ
A
§
à
A^
Gronwall
Ø
ª
,
·
‚
¼
k
¯
z
(
t
)
k
2
H
1
t
6
C
e
C
(
R,λ
1
)(
t
−
τ
)
k
¯
z
(
τ
)
k
2
H
1
τ
, t
∈
[
τ,T
]
.
†
d
Ó
ž
,
·
‚
y
²
¯
K
(2.2)
Ú
(2.3)
f
)
•
˜
5
.
du
½
n
3
.
8,
L
§
U
(
t,τ
)
Î
Ü
¯
K
(2.2)
Ú
(2.3)
½
Â
X
e
:
z
(
t
) =
U
(
t,τ
)
z
(
τ
) :
H
1
τ
→H
1
t
,
ù
‡
l
H
1
τ
H
1
t
L
§
´
ë
Y
.
4.
ž
m
•
6
Û
á
Ú
f
•
3
5
4.1.
ž
m
•
6
á
Â
8
3
H
1
t
¥
•
3
5
½
n
4.1
(
Ñ
Ñ
5
)
b
(1
.
3)
Ú
(1
.
4)
ª
±
9
^
‡
(H
1
)-(H
4
)
¤
á
,
g
∈
L
2
(Ω),
•
3
S
{
z
n
(
τ
)
}∈
H
2
τ
,
¦
z
n
(
τ
)
→
z
(
τ
)
.
é
u
?
¿
Ð
©
^
‡
z
(
τ
)
∈
B
τ
(
R
)
⊂H
1
τ
,
@
o
•
3
R
0
>
0,
¦
ƒ
A
¯
K
(2
.
2),(2
.
3)
L
§
U
(
t,τ
)
Pk
˜
‡
ž
m
•
6
á
Â
8
,
¿
›
x
B
t
=
{
B
t
(
R
0
)
}
t
∈
R
.
y
²
¦
^
Poincar´e
Ø
ª
Ú
(H
4
),
·
‚
U
l
(3
.
18)
ª
¥
¼
N
(
t
)+
θλ
1
2
R
t
τ
k
u
(
r
)
k
2
d
r
+
θ
2
R
t
τ
k
u
(
r
)
k
2
1
d
r
+
δ
R
t
τ
κ
(
r
)
k
η
r
(
s
)
k
2
M
1
t
d
s
d
r
6
N
(
τ
)+
Q
1
(
t
−
τ
)
.
(4
.
1)
¿
›
X
,
N
(
t
)+2
ε
Z
t
τ
N
(
r
)d
r
6
N
(
τ
)+
ε
Z
t
τ
N
(
r
)d
r
+
Q
1
(
t
−
τ
)
,
ù
p
,
ε
= min
{
1
2
θλ
1
,
1
2
θ,δ
inf
r
∈
[
τ,t
]
κ
(
r
)
}
.
A^
Ú
n
2
.
4 ,
·
‚
í
ä
Ñ
N
(
t
)
6
N
(
τ
)e
−
ε
(
t
−
τ
)
+
Q
1
e
ε
1
−
e
−
ε
.
d
,
k
z
(
t
)
k
2
H
1
t
6
N
(
t
)
6
(1+
1
λ
1
)
k
z
(
τ
)
k
2
H
1
τ
e
−
ε
(
t
−
τ
)
+
R
2
0
2
,
(4
.
2)
Ù
¥
R
2
0
= 2
Q
1
e
ε
1
−
e
−
ε
.
@
o
é
z
‡
R>
0,
•
3
˜
‡
t
0
=
t
0
(
R
) =
1
ε
ln
2(1+
1
λ
1
)
R
2
R
2
0
6
t
¿
…
R
0
>
0
¦
τ
6
t
−
t
0
⇒
U
(
t,τ
)
B
τ
(
R
)
⊂
B
t
(
R
0
)
.
4.2.
ž
m
•
6
Û
á
Â
8
3
H
1
t
¥
•
3
5
e
5
,
·
‚
ò
y
²
)
L
§
U
(
t,τ
)
ƒ
A
(2
.
2), (2
.
3)
é
A
ì
C;
5
.
•
d
,
·
‚
I
‡
é
š
‚
DOI:10.12677/pm.2023.1351501473
n
Ø
ê
Æ
o
Œ
A
§
à
5
‘
,
)
,
)
L
§
?
1
˜
©
)
.
'
u
š
‚
5
‘
f
,
É
[2]
é
u
,
·
‚
ò
Ù
©
)
X
e
:
f
(
s
) =
f
0
(
s
)+
f
1
(
s
)
,
Ù
¥
f
0
,f
1
∈
C
1
(
R
)
¿
…
÷
v
:
|
f
0
0
(
u
)
|
6
C
(1+
|
u
|
p
−
1
)
,
∀
u
∈
R
,
1
6
p
6
3
,
(4.3)
f
0
(
u
)
u
>
0
,
∀
u
∈
R
,
(4.4)
|
f
0
1
(
u
)
|
6
C
(1+
|
u
|
γ
)
,
∀
u
∈
R
,
1
6
γ<
2
,
(4.5)
liminf
|
u
|→∞
f
0
1
(
u
)
>
−
λ
1
.
(4.6)
É
[20]
g
Ž
K
•
,
ò
¯
K
(2.2),(2.3)
)
z
(
t
) = (
u
(
t
)
,η
t
)
©
)
•
:
z
(
t
) =
z
1
(
t
)+
z
2
(
t
)
,u
(
t
) =
v
(
t
)+
w
(
t
)
,η
t
=
ζ
t
+
ξ
t
,
ù
p
,
z
1
(
t
) = (
v
(
t
)
,ζ
t
)
…
z
2
(
t
) = (
w
(
t
)
,ξ
t
)
)û
e
ã
¯
K
:
∂
t
v
+
Av
+
Z
∞
0
µ
t
(
s
)
Aζ
t
(
s
)d
s
+
f
0
(
v
) = 0
,
∂
t
ζ
t
+
∂
s
ζ
t
=
v
(
t
)
,
v
(
x,t
)
|
∂
Ω
= 0
,v
(
x,τ
) =
u
τ
(
x,t
)
,
ζ
t
(
x,s
)
|
∂
Ω
= 0
,ζ
τ
(
x,s
) =
η
τ
(
x,s
)
,
(4
.
7)
Ù
¥
,
ζ
t
(
s
) =
R
s
0
v
(
t
−
r
)d
r,
0
<s
6
t
−
τ,
ζ
τ
(
s
−
t
+
τ
)+
R
t
−
τ
0
v
(
t
−
r
)d
r,s>t
−
τ,
¿
…
∂
t
w
+
Aw
+
Z
∞
0
µ
t
(
s
)
Aξ
t
(
s
)d
s
+
f
(
u
)
−
f
0
(
v
) =
g,
∂
t
ξ
t
+
∂
s
ξ
t
=
w
(
t
)
,
w
(
x,t
)
|
∂
Ω
= 0
,w
(
x,τ
) = 0
,
ξ
t
(
x,s
)
|
∂
Ω
= 0
,ξ
τ
(
x,s
) = 0
,
(4
.
8)
Ù
¥
,
ξ
t
(
s
) =
R
s
0
w
(
t
−
r
)d
r,
0
<s
6
t
−
τ,
R
t
−
τ
0
w
(
t
−
r
)d
r,s>t
−
τ.
a
q
u
½
n
3
.
8
y
²
,
•
§
(4
.
7)
Ú
(4
.
8)
)
•
3
5
Ú
•
˜
5
Œ
±
¼
.
DOI:10.12677/pm.2023.1351501474
n
Ø
ê
Æ
o
Œ
A
§
à
?
˜
Ú
,
N
´
•
,
L
§
U
1
(
t,τ
)
Ú
U
2
(
t,τ
)
é
A
•
§
(4
.
7)
Ú
(4
.
8).
{
ü
å
„
,
·
‚
U
(
t,τ
)
z
τ
=
U
1
(
t,τ
)
z
1
(
τ
)+
U
2
(
t,τ
)
z
2
(
τ
) =
z
1
(
t
)+
z
2
(
t
)
.
a
q
u
½
n
4
.
1,
Œ
±
X
e
(
J
.
Ú
n
4.2
b
f
0
÷
v
(4
.
3)
Ú
(4
.
4) .
X
J
(H
1
)-(H
4
)
¤
á
,
@
o
•
§
(4
.
7)
÷
v
O
:
(i)
•
3
S
{
z
n
(
τ
)
}∈H
2
τ
,
¦
z
n
(
τ
)
→
z
(
τ
)
.
Ð
Š
z
1
(
τ
)
∈H
1
τ
…
k
z
1
(
τ
)
k
H
1
τ
6
R
1
,
k
z
1
(
t
)
k
2
H
1
t
6
C
(
R
1
)e
−
ε
1
(
t
−
τ
)
.
(4
.
9)
(ii)
Ð
Š
z
1
(
τ
)
∈H
2
τ
…
k
z
1
(
τ
)
k
H
2
τ
6
R
2
,
k
z
1
(
t
)
k
2
H
2
t
6
C
(
R
2
)e
−
ε
1
(
t
−
τ
)
.
(4
.
10)
ù
p
R
1
Ú
R
2
þ
•
~
ê
.
y
²
ò
•
§
(4
.
7)
¦
±
v
,
d
d
t
(
k
v
k
2
)+2
k
v
k
2
1
+2
h
v,ζ
t
i
M
1
t
+2
h
f
0
(
v
)
,v
i
= 0
.
(4
.
11)
·
‚
½
Â
F
(
t
) =
k
v
k
2
.
•
Ä
(4
.
4),
·
‚
í
ä
Ñ
d
d
t
F
(
t
)+2
k
v
k
2
1
+2
h
v,ζ
t
i
M
1
t
6
0
.
(4
.
12)
3
[
τ,t
]
‰
(4
.
11)
ª
È
©
,
·
‚
k
F
(
t
)+2
R
t
τ
k
v
(
r
)
k
2
1
d
r
+2
R
t
τ
h
v,ζ
r
i
M
1
r
d
r
6
F
(
τ
)
,
∀
t
>
τ.
(4
.
13)
du
½
n
3
.
6,
·
‚
k
F
(
t
)+
k
ζ
t
k
2
M
1
t
+2
Z
t
τ
k
v
(
r
)
k
2
1
d
r
+
δ
Z
t
τ
κ
(
r
)
k
ζ
r
(
s
)
k
2
M
1
t
d
r
6
F
(
τ
)+
k
ζ
τ
k
2
M
1
τ
,
∀
t
>
τ.
½
Â
F
(
t
) =
F
(
t
)+
k
ζ
t
k
2
M
1
t
.
@
o
,
F
(
t
)+2
R
t
τ
k
v
(
r
)
k
2
1
d
r
+
δ
R
t
τ
κ
(
r
)
k
ζ
r
(
s
)
k
2
M
1
t
d
r
6
F
(
τ
)
.
(4
.
14)
DOI:10.12677/pm.2023.1351501475
n
Ø
ê
Æ
o
Œ
A
§
à
•
Ò
´
`
,
F
(
t
)+2
ε
1
Z
t
τ
F
(
r
)d
r
6
F
(
τ
)+
ε
1
Z
t
τ
F
(
r
)d
r,
ù
p
,
ε
1
= min
{
λ
1
,
1
,δ
inf
r
∈
[
τ,t
]
κ
(
r
)
}
.
d
Ú
n
2
.
4,
·
‚
¼
F
(
t
)
6
F
(
τ
)e
−
ε
1
(
t
−
τ
)
.
?
˜
Ú
,
k
z
1
(
t
)
k
2
H
1
τ
=
F
(
t
)
6
C
(
R
1
,λ
1
)e
−
ε
1
(
t
−
τ
)
,
(4
.
15)
Ù
¥
k
z
(
τ
)
k
2
H
1
τ
6
R
1
.
Ð
Š
z
1
(
τ
)
∈H
2
τ
ž
,
ò
•
§
(4
.
7)
¦
±
−
∆
v
,
d
d
t
(
k
v
k
2
1
)+2
k
v
k
2
2
+2
h
v,ζ
t
i
M
2
t
+2
h
f
0
(
v
)
,v
i
= 0
.
(4
.
16)
·
‚
½
Â
F
1
(
t
) =
k
v
k
2
1
.
•
Ä
(4
.
4),
·
‚
í
ä
Ñ
d
d
t
F
1
(
t
)+2
k
v
k
2
2
+2
h
v,ζ
t
i
M
2
t
6
0
.
(4
.
17)
3
[
τ,t
]
‰
(4
.
17)
ª
È
©
,
·
‚
k
F
1
(
t
)+2
R
t
τ
k
v
(
r
)
k
2
2
d
r
+2
R
t
τ
h
v,ζ
r
i
M
2
r
d
r
6
F
1
(
τ
)
,
∀
t
>
τ.
(4
.
18)
du
½
n
3
.
6,
·
‚
k
F
1
(
t
)+
k
ζ
t
k
2
M
2
t
+2
Z
t
τ
k
v
(
r
)
k
2
2
d
r
+
δ
Z
t
τ
κ
(
r
)
k
ζ
r
(
s
)
k
2
M
2
t
d
r
6
F
1
(
τ
)+
k
ζ
τ
k
2
M
2
τ
,
∀
t
>
τ.
½
Â
F
1
(
t
) =
F
1
(
t
)+
k
ζ
t
k
2
M
2
t
.
@
o
,
F
1
(
t
)+2
R
t
τ
k
v
(
r
)
k
2
2
d
r
+
δ
R
t
τ
κ
(
r
)
k
ζ
r
(
s
)
k
2
M
2
t
d
r
6
F
1
(
τ
)
.
(4
.
19)
•
Ò
´
`
,
F
1
(
t
)+2
ε
1
Z
t
τ
F
1
(
r
)d
r
6
F
1
(
τ
)+
ε
1
Z
t
τ
F
1
(
r
)d
r,
ù
p
,
ε
1
= min
{
λ
1
,
1
,δ
inf
r
∈
[
τ,t
]
κ
(
r
)
}
.
d
Ú
n
2
.
4,
·
‚
¼
DOI:10.12677/pm.2023.1351501476
n
Ø
ê
Æ
o
Œ
A
§
à
F
1
(
t
)
6
F
1
(
τ
)e
−
ε
1
(
t
−
τ
)
.
?
˜
Ú
,
k
z
1
(
t
)
k
2
H
2
τ
=
F
1
(
t
)
6
C
(
R
2
,λ
1
)e
−
ε
1
(
t
−
τ
)
,
(4
.
20)
Ù
¥
k
z
(
τ
)
k
2
H
2
τ
6
R
2
.
Ú
n
4.3
b
š
‚
5
‘
f
÷
v
(1
.
3), (1
.
4)
Ú
(4
.
3)-(4
.
6).
X
J
g
∈
L
2
(Ω)
¿
…
(H
1
)-(H
4
)
¤
á
,
@
o
é
u
z
ã
ž
m
T>
0,
•
3
S
{
z
n
(
τ
)
}∈H
2
τ
,
¦
z
n
(
τ
)
→
z
(
τ
)
.
é
u
Ð
©
^
‡
z
τ
∈H
1
τ
,
•
3
˜
‡
~
ê
I
=
I
(
k
g
k
,
k
z
τ
k
H
1
τ
,T,λ
1
),
¦
(4
.
8)
)
÷
v
:
k
U
2
(
T
+
τ,τ
)
z
2
(
τ
)
k
2
H
4
3
T
+
τ
=
k
z
2
(
T
+
τ
)
k
2
H
4
3
T
+
τ
6
I.
(4
.
21)
y
²
ò
•
§
(4
.
8)
1
˜
‡
•
§¦
±
A
1
3
w,
Œ
d
d
t
G
(
t
)+2
k
w
(
t
)
k
2
4
3
+2
h
ξ
t
,w
(
t
)
i
M
4
3
t
= 2
h
g,A
1
3
w
i−
2
h
f
1
(
v
)
,A
1
3
w
i−
2
h
f
(
u
)
−
f
(
v
)
,A
1
3
w
i
,
(4
.
22)
Ù
¥
G
(
t
) =
k
w
(
t
)
k
2
1
3
.
N
´
•
2
|h
g,A
1
3
w
i|
6
1
4
k
w
k
2
4
3
+
4
k
g
k
2
λ
2
3
1
.
(4
.
23)
·
‚
Œ
±
l
(4
.
5)
Ú
(1
.
3)
¥
¼
−
2
h
f
1
(
v
)
,A
1
3
w
i
6
C
R
Ω
(1+
|
v
|
γ
)
|
A
1
3
w
|
d
x
6
C
(
R
Ω
(1+
|
v
|
18
γ
13
)d
x
)
13
18
(
R
Ω
|
A
1
3
w
|
18
5
d
x
)
5
18
6
C
(1+
k
v
k
γ
L
6
)
k
A
1
3
w
k
L
18
5
6
C
(
R,λ
1
)
k
w
k
4
3
6
1
4
k
w
k
2
4
3
+
C
(4
.
24)
…
−
2
h
f
(
u
)
−
f
(
v
)
,A
1
3
w
i
6
C
R
Ω
(1+
|
u
|
p
−
1
+
|
v
|
p
−
1
)
|
w
||
A
1
3
w
|
d
x
6
C
(
k
u
k
p
−
1
L
3(
p
−
1)
2
+
k
v
k
p
−
1
L
3(
p
−
1)
2
)
k
w
k
L
18
k
A
1
3
w
k
L
18
5
6
C
(
k
u
k
p
−
1
1
+
k
v
k
p
−
1
1
)
k
w
k
L
18
k
A
1
3
w
k
L
18
5
6
c
0
k
w
k
2
4
3
,
(4
.
25)
Ù
¥
c
0
=
c
0
(
Q
0
),
¿
…
·
‚
¦
^
i
\
V
4
3
→
L
18
,V
2
3
→
L
18
5
,
V
1
→
L
6
.
Ï
d
,
r
(4
.
23)-(4
.
25)
\
(4
.
22),
·
‚
k
d
d
t
G
(
t
)+2
h
ξ
t
,w
(
t
)
i
M
4
3
t
6
(
c
0
−
3
2
)
k
w
(
t
)
k
2
4
3
+
C.
(4
.
26)
DOI:10.12677/pm.2023.1351501477
n
Ø
ê
Æ
o
Œ
A
§
à
3
[
τ,T
+
τ
]
È
©
,
·
‚
k
G
(
T
+
τ
)+2
R
T
+
τ
τ
h
ξ
r
,w
(
r
)
i
M
4
3
r
d
r
6
G
(
τ
)+(
c
0
−
3
2
)
R
T
+
τ
τ
k
w
(
r
)
k
2
4
3
d
r
+
CT.
(4
.
27)
½
Â
G
(
t
) =
k
w
(
t
)
k
2
1
3
+
k
ξ
t
k
2
M
4
3
t
.
du
½
n
3
.
6,
·
‚
k
G
(
T
+
τ
)+
δ
R
T
+
τ
τ
κ
(
r
)
k
ξ
r
(
s
)
k
2
M
4
3
r
d
r
6
G
(
τ
)+(
c
0
−
3
2
)
R
T
+
τ
τ
k
w
(
r
)
k
2
4
3
d
r
+
CT.
(4
.
28)
•
Ò
´
`
G
(
T
+
τ
)
6
G
(
τ
)+
c
1
R
T
+
τ
τ
G
(
r
)d
r
+
CT.
(4
.
29)
d
Gronwall
Ø
ª
,
·
‚
í
ä
Ñ
G
(
T
+
τ
)
6
e
c
1
T
(
G
(
τ
)+
CT
) =
CT
e
c
1
T
.
a
q
,
k
z
2
(
T
+
τ
)
k
2
H
4
3
T
+
τ
6
G
(
T
+
τ
)
6
CT
e
c
1
T
=
I.
d
,
é
u
?
¿
ξ
τ
∈
L
2
µ
τ
(
R
+
;
V
1
),Cauchy
¯
K
(
„
[3,12,18])
∂
t
ξ
t
=
−
∂
s
ξ
t
+
w,t>τ,
ξ
τ
=
ξ
τ
,
(4
.
30)
k
•
˜
)
ξ
t
∈
C
([
τ,
+
∞
);
L
µ
τ
(
R
+
;
V
1
))
…
k
w
ª
L
ˆ
:
ξ
t
(
s
) =
R
s
0
w
(
t
−
r
)d
r,
0
<s
6
t
−
τ,
R
t
−
τ
0
w
(
t
−
r
)d
r,s>t
−
τ.
(4
.
31)
·
‚
^
B
t
L
«
k
½
n
4
.
1
¼
ž
m
•
6
á
Â
8
.
@
o
,
·
‚
K
T
= Π
U
2
(
T,τ
)
B
τ
,
ù
p
,Π :
V
1
×
L
µ
t
(
R
+
;
V
1
)
→
L
µ
t
(
R
+
;
V
1
)
´
˜
‡
Ý
K
Ž
f
.
Ú
n
4.4
z
2
(
t
) = (
w
(
t
)
,ξ
t
)
´
¯
K
(4
.
8)
)
.
b
š
‚
5
‘
÷
v
(1
.
3),(1
.
4)
…
(4
.
3)
−
(4
.
6).
X
J
g
∈
L
2
(Ω)
¿
…
(H
1
)-(H
4
)
¤
á
,
@
o
,
é
z
‡‰
½
T>τ
,
•
3
˜
‡
~
ê
I
1
=
I
1
(
k
B
τ
k
H
1
τ
),
¦
(i)
K
T
3
L
2
µ
τ
(
R
+
);
V
4
3
)
∩
H
1
µ
τ
(
R
+
;
V
1
)
k
.
;
DOI:10.12677/pm.2023.1351501478
n
Ø
ê
Æ
o
Œ
A
§
à
(ii)sup
η
T
∈K
T
k
ξ
T
(
s
)
k
2
1
6
I
1
.
y
²
3
(4
.
31)
*
:
e
,
·
‚
í
ä
Ñ
∂
s
ξ
t
(
s
) =
w
(
t
−
s
)
,
0
<s
6
t
−
τ,
0
,s>t
−
τ.
(4
.
32)
du
Ú
n
4
.
3,
§
Œ
±
y
²
(i)
¤
á
.
e
5
,
´
k
ξ
T
(
s
)
k
1
6
R
s
0
k
w
(
T
−
r
)
k
1
d
r
6
R
T
−
τ
0
k
w
(
T
−
r
)
k
1
d
r,
0
<s
6
T
−
τ,
R
T
−
τ
0
k
w
(
T
−
r
)
k
1
d
r,s>T
−
τ,
(4
.
33)
¤
á
.
d
(4
.
22)
ª
,(ii)
•
Œ
±
y
.
Ú
n
4.5
3
Ú
n
4
.
4
b
¤
á
e
.
@
o
é
u
z
‡
½
T>τ
,
U
2
(
T,τ
)
B
τ
3
H
1
T
ƒ
é
;
.
y
²
¯¢
þ
,
A^
Ú
n
2.2
·
‚
•
K
T
3
L
µ
τ
(
R
+
;
V
1
)
ƒ
é
;
.
¿
…
2
g
¦
^
(H
2
)
b
,
·
‚
K
T
3
L
µ
t
(
R
+
;
V
1
)
ƒ
é
;
.
d
,
k
;
i
\
:
V
3
4
→
→
V
1
,
·
‚
í
ä
Ñ
U
2
(
T,τ
)
B
τ
3
H
1
T
ƒ
é
;
.
Ú
n
4.6
U
(
t,τ
)
´
¯
K
(2
.
2), (2
.
3)
)
L
§
.
b
š
‚
5
‘
f
÷
v
(1
.
3), (1
.
4)
Ú
(4
.
3)-(4
.
6).
X
J
g
∈
L
2
(Ω)
¿
…
(H
1
)-(H
4
)
¤
á
,
@
o
L
§
U
(
t,τ
)
Pk
ž
m
•
6
á
Â
8
A
=
{
A
t
}
t
∈
R
in
H
1
t
.
d
,
á
Ú
f
A
´
ØC
,
¿
›
X
,
U
(
t,τ
)
A
τ
=
A
t
,
∀
t
>
τ.
y
²
B
t
=
{
B
t
(
R
0
)
}
t
∈
R
´
k
½
n
4.1
¼
ž
m
•
6
á
Â
8
.
d
Ú
n
4.2
Ú
Ú
n
4.3,
é
u
v
Œ
~
ê
R
1
,
´
x
B
1
3
t
=
{
B
1
3
t
(
R
1
)
}
t
∈
R
´
.
£
á
Ú
,
ù
p
B
1
3
t
(
R
1
) =
{
ξ
|k
ξ
k
H
4
3
t
6
R
1
}
.
¯¢
þ
,
(
Ü
(4
.
9)
Ú
(4
.
21),
·
‚
í
ä
Ñ
dist
H
1
t
(
U
(
t,τ
)
B
τ
,B
1
3
t
)
6
dist
H
1
t
(
U
1
(
t,τ
)
B
τ
+
U
2
(
t,τ
)
B
τ
,B
1
3
t
)
= dist
H
1
t
(
U
1
(
t,τ
)
B
τ
,B
1
3
t
)
6
C
(
k
B
τ
k
H
1
τ
)
e
−
ε
1
(
t
−
τ
)
,
ù
p
,
ε
1
= min
{
λ
1
,
1
,δ
inf
r
∈
[
τ,t
]
κ
(
r
)
}
.
DOI:10.12677/pm.2023.1351501479
n
Ø
ê
Æ
o
Œ
A
§
à
é
?
Û
k
.
8
(
3
H
1
τ
)
B
τ
=
{
B
τ
(
R
)
}
τ
∈
R
,
k
½
n
4
.
1,
•
3
˜
‡
t
0
=
t
0
(
R
)
¦
τ
6
t
−
t
0
⇒
U
(
t,τ
)
B
τ
(
R
)
⊂
B
t
(
R
0
)
.
Ï
d
,
dist
H
1
t
(
U
(
t,τ
)
B
τ
,
B
t
)
6
e
ε
1
t
0
e
−
ε
1
(
t
−
τ
)
,
Ù
¥
=sup
0
6
t
−
τ
6
t
0
k
U
(
t,τ
)
B
τ
k
H
1
t
.
A^
Ú
n
2
.
3
Ú
½
n
3
.
8,
·
‚
Œ
±
¼
dist
H
1
t
(
U
(
t,τ
)
B
τ
,B
1
3
t
)
6
C
(
k
B
τ
k
H
1
τ
)e
−
ε
1
(
t
−
τ
)
.
(
Ü
Ú
n
4
.
5,
·
‚
k
¯
K
(2
.
2), (2
.
3)
ƒ
A
L
§
U
(
t,τ
)
3
H
1
t
¥
ì
C;
5
.
Ï
d
,
A^
½
n
2
.
7,
½
n
2
.
10
Ú
½
n
3
.
8,
·
‚
Œ
±
y
²
ž
m
•
6
á
Â
8
A
=
{
A
t
}
t
∈
R
3
H
1
t
ØC
5
Ú
•
3
5
,
•
Ò
´
`
U
(
t,τ
)
A
τ
=
A
t
,
¿
…
A
=
{
Z
|
t
→
Z
(
t
)
∈H
1
t
…
Z
(
t
)
´
L
§
U
(
t,τ
)
CBT
}
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
‘
8
(
1
O
Ò
:11961059; 12061062)
"
ë
•
©
z
[1]Aifantis,E.C.(1980)OntheProblemofDiffusioninSolids.
ActaMechanica
,
37
,265-296.
https://doi.org/10.1007/BF01202949
[2]Arrieta,J.,Carvalho,A.N.andHale,J.K.(1992)ADampedHyperbolicEquationswith
CriticalExponents.
CommunicationsinPartialDifferentialEquations
,
17
,841-866.
https://doi.org/10.1080/03605309208820866
[3]Borini,S.andPata,V.(1999)UniformAttractorsforaStronglyDampedWaveEquations
withLinearMemory.
AsymptoticAnalysis
,
20
,263-277.
[4]Conti,M.,Danese,V.,Giorgi,C.andPata,V.(2018)AModelofViscoelasticitywithTime-
DependentMemoryKernels.
AmericanJournalofMathematics
,
140
,349-389.
https://doi.org/10.1353/ajm.2018.0008
DOI:10.12677/pm.2023.1351501480
n
Ø
ê
Æ
o
Œ
A
§
à
[5]Conti,M.,Danese,V.andPata,V.(2018)ViscoelasticitywithTime-DependentMemory
Kernels.PartII:AsymptoticBehaviorofSolutions.
AmericanJournalofMathematics
,
140
,
1687-1721.https://doi.org/10.1353/ajm.2018.0049
[6]Chen,P.J.and Gurtin,M.E. (1968)On aTheory ofHeatConductionInvolvingTwoTemper-
atures.
Zeitschriftf¨urAngewandteMathematikundPhysikZAMP
,
19
,614-627.
https://doi.org/10.1007/BF01594969
[7]Conti,M.,Pata,V.andTemam,R.(2013)AttractorsfortheProcessesonTime-Dependent
Spaces.ApplicationstoWaveEquations.
JournalofDifferentialEquations
,
255
,1254-1277.
https://doi.org/10.1016/j.jde.2013.05.013
[8]Chepyzhov, V.V.andVishik, M.I.(2002)AttractorsforEquationsofMathematicalPhysics.In:
AMSeBooks:ColloquiumPublications
,Vol.49,AmericanMathematicalSociety,Providence,
RI.https://doi.org/10.1090/coll/049
[9]Conti,M.andPata,V.(2014)AsymptoticStructureoftheAttractorforProcessesonTime-
DependentSpaces.
NonlinearAnalysis:RealWorldApplications
,
19
,1-10.
https://doi.org/10.1016/j.nonrwa.2014.02.002
[10]Dafermos, C.M. (1970)Asymptotic Stability inViscoelasticity.
ArchiveforRationalMechanics
andAnalysis
,
37
,297-308.https://doi.org/10.1007/BF00251609
[11]Ding, T. and Liu, Y.F. (2015) Time-DependentGlobal Attractor forthe Nonclassical Diffusion
Equations.
ApplicableAnalysis
,
94
,1439-1449. https://doi.org/10.1080/00036811.2014.933475
[12]Coleman,B.D.andGurtin,M.E.(1967)EquipressenceandConstitutiveEquationsforRigid
HeatConductors.
Zeitschriftf¨urangewandteMathematikundPhysikZAMP
,
18
,199-208.
https://doi.org/10.1007/BF01596912
[13]Gatti, C., Miranville, A., Pata, V. and Zelik, S.V. (2008) Attractors for Semi-Linear Equations
ofViscoelasticitywithVeryLowDissipation.
RockyMountainJournalofMathematics
,
38
,
1117-1138.https://doi.org/10.1216/RMJ-2008-38-4-1117
[14]Grasselli,M.andPata,V.(2002)UniformAttractorsofNonautonomousDynamicalSystems
withMemory.ProgressinNonlinear
DifferentialEquationsandTheirApplications
,
50
,155-
178.https://doi.org/10.1007/978-3-0348-8221-79
[15]Pata, V. and Squassina, M. (2005) On the Strongly Damped Wave Equation.
Communications
inMathematicalPhysics
,
253
,511-533.https://doi.org/10.1007/s00220-004-1233-1
[16]Simon,J.(1987)CompactSetsintheSpace
L
p
(0
,T
;
B
).
AnnalidiMatematicaPuraedAp-
plicata
,
146
,65-96.https://doi.org/10.1007/BF01762360
[17]Pata,V.andZucchi,A.(2001)AttractorsforaDampedHyperbolicEquationwithLinear
Memory.
AdvancesinMathematicalSciencesandApplications
,
11
,505-529.
[18]Zelik,S.V.(2004)AsymptoticRegularityofSolutionsofaNonautonomousDampedWave
EquationwithaCriticalGrowthExponent.
CommunicationsonPureandAppliedAnalysis
,
3
,921-934.https://doi.org/10.3934/cpaa.2004.3.921
DOI:10.12677/pm.2023.1351501481
n
Ø
ê
Æ
o
Œ
A
§
à
[19]Meng,F.J.,Wu,J.andZhao,C.X.(2019)Time-DependentGlobalAttractorforExtensible
BergerEquation.
JournalofMathematicalAnalysisandApplications
,
469
,1045-1069.
https://doi.org/10.1016/j.jmaa.2018.09.050
[20]Sun,C.Y.,Wang,S.Y.andZhong,C.K.(2007)GlobalAttractorsforaNonclassicalDiffusion
Equation.
ActaMathematicaSinica
,
23
,1271-1280.
https://doi.org/10.1007/s10114-005-0909-6
DOI:10.12677/pm.2023.1351501482
n
Ø
ê
Æ