设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(5),1456-1482
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135150
žm•6PÁ.²;‡A*Ñ•§áÚf
oooŒŒŒAAA§§§ààà
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2023c423F¶¹^Fϵ2023c524F¶uÙFϵ2023c531F
Á‡
©•Ääkžm•6PÁØ²;‡A*Ñ•§§š‚5‘÷vg.O•ž§3žm•
6˜mH
1
0
(Ω)×L
2
µ
t
(R
+
;H
1
0
(Ω)) ¥•§)•žmÄåÆ1•"3#nصee§|^È©
O•{±9©)Eâ)·½5ÚK5§?y²žm•6ÛáÚf•35"
'…c
²;‡A*Ñ•§§žm•6PÁا·½5§žm•6ÛáÚf§•35
AttractorsfortheClassicalReaction
DiffusionEquationwithTime-Dependent
MemoryKernel
YunaLi,XuanWang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.23
rd
,2023;accepted:May24
th
,2023;published:May31
st
,2023
Abstract
Inthispaper,weconsiderthelong-timedynamicalbehaviorofsolutionsfortheclas-
©ÙÚ^:oŒA,à.žm•6PÁ.²;‡A*Ñ•§áÚf[J].nØêÆ,2023,13(5):1456-1482.
DOI:10.12677/pm.2023.135150
oŒA§à
sicalreactiondiffusionequationwithtime-dependentmemorykernelwhennonlinear
term adheresto subcritical growthin thetime-dependent space H
1
0
(Ω)×L
2
µ
t
(R
+
;H
1
0
(Ω)).
Underthenewtheoricalframework,thewell-posednessandtheregularityoftheso-
lution,theexistenceofthetime-dependentglobalattractorsareprovedbyusingthe
delicateintegralestimationmethodanddecompositiontechnique.
Keywords
ClassicalReactionDiffusionEquation,QuadTime-DependentMemoryKernel,
Well-Posed-Ness,Time-DependentGlobalAttractors,Existence
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©ïÄäkžm•6PÁØ²;‡A*Ñ•§ÄåXÚ)•žmÄåÆ1•
∂
t
u−∆u−
Z
∞
0
k
t
(s)∆u(t−s)ds+f(u) = g, (x,t) ∈Ω×(τ,+∞),(1.1)
u(x,t)|
∂Ω
= 0,t∈(τ,+∞),u(x,τ) = u
τ
(x,t),x∈Ω,t∈(−∞,τ].(1.2)
Ù¥Ω ⊂R
3
•‘k1w>.k.•.
bžm•6¼êk
t
(s)´šK, à, ŒÚ. ¿…κ(t)=
R
∞
0
µ
t
(s)ds,∀s∈R
+
,t∈R.é
²wµ
t
(s) = −∂
s
κ
t
(s).?˜Ú, bN(t,s) 7→µ
t
(s) : R×R
+
7→R
+
.÷veã^‡:
(H
1
)éu?¿½t∈R, Ns7→µ
t
(s)´šK, šO,ýéëYŒÚ. ½Â
κ(t) =
Z
∞
0
µ
t
(s)ds,inf
t∈R
κ(t) >0.
(H
2
)éu?¿τ∈R, •3˜‡ëY¼êK
τ
: [τ,∞) →R
+
,¦
µ
t
(s) 6K
τ
(t)µ
τ
(s),∀t>τ,a.e.s∈R
+
.
(H
3
)éuz˜‡½s>0, Nt7→µ
t
(s)éu¤kt∈R´Œ‡,¿…éu ?¿;
DOI:10.12677/pm.2023.1351501457nØêÆ
oŒA§à
8K⊂R×R
+
,k
(t,s) 7→µ
t
(s) ∈L
∞
(K),(t,s) 7→∂
t
µ
t
(s) ∈L
∞
(K).
(H
4
)•3δ>0¦
∂
t
µ
t
(s)+∂
s
µ
t
(s)+δκ(t)µ
t
(s) 60,∀t∈R
+
, a.e.s∈R
+
.
bå‘g∈L
2
(Ω),…š‚5‘f∈C
1
(R)÷vf(0) = 0, ¿…÷v:
|f
0
(u)|6C(1+|u|
p−1
),∀u∈R,f
0
(u) >C
1
,
(1.3)
Ù¥1 6p63,C
1
>0,C´˜‡~ê.¿…f÷vÑÑ5^‡
liminf
|u|→∞
f
0
(u) >−λ
1
,
(1.4)
3ùp,λ
1
>0´î‚DirichletŽf1˜AŠ,A=−∆…½Â•D(A)=
H
2
(Ω)∩H
1
0
(Ω).w,, Šâ(1.4) Œ±e'X:•30 <θ<1Ú~êc
f
,k
hF(u),1i>−
1
2
(1−θ)kuk
2
1
−c
f
,
(1.5)
hf(u),ui>hF(u),1i−
1
2
(1−θ)kuk
2
1
−c
f
,
(1.6)
Ù¥F(u) =
R
u
0
f(s)ds.
•§(1.1) Ø•¹PÁ‘ž(=h
t
≡0), •§(1.1) K•²;‡A*Ñ•§,T•§36NåÆ
Ú9D+•¥kX2•A^,„©z[1–3]. Cc5,kNõÆöÑ3l¯'uš²;*Ñ•§)
•žm1•ïÄ[4–11]9 ƒ'©z.~X,©z[5] Šö3š‚5‘•g.•êO•^‡
e, y²š²;*Ñ•§;áÚf•35. ©z[6] ¥, 3g£œ/e éuš‚5‘÷v.
•êO•,å‘áu˜mH
−1
(Ω) ž, ?ØÛáÚf•35; 3šg£œ/e, å‘
áu˜mL
2
b
(R;L
2
(Ω))ž, ?Ø•êáÚfÚ˜—áÚf•35.
•§•¹žm•6PÁ‘(=Ï~ PòPÁ‘, PÁØ¼êØ•6ut) ž, (1.1) £ã9
63PòPÁK•eÓa,½Úˆ•Ó5Ê59DN¥DL§.ù«Ü¤.
5u[12]Coleman ÚGurtin ïá®²•<2•É‘PÁ96nصe. ©z[8] Š
ö3å‘=áuH
−1
(Ω) ÚL
2
(Ω), š‚5‘•.•êO•žy²š²;*Ñ•§Ûá
Úf•35±9K5.©z[9]¥,š‚5‘f÷v?¿õ‘ªO•^‡ž, 3ÿÀ˜m
H
1
0
(Ω)∩H
2
(Ω)×L
2
µ
(R
+
;H
1
0
(Ω)∩H
2
(Ω))¥y²ráÚf•35.
•§•¹žm•6PÁ‘(= PÁ‘•6ut) ž,L«Ê5áÊ5‘Xžm6²
¬Åìž”,=ÑyPzy–,X“,‡á,ù¦·‚ïÄé–CE,k. žm•6
P ÁØ•3‰O‘5Ÿ5(J. Äk, duPÁؼê•6užm, ½ÂCþη
t
žm
ꆱ ØÓ. Ùg, ^u¹kšžm•6PÁ‘•§²;•{Ú‡©ØªÃ{?1•§
(1.1) ÑÑ5OÚ)L§;5y. •ŽÑ±þ(J, ·‚/Ï©z[13,14] *:, 3#
DOI:10.12677/pm.2023.1351501458nØêÆ
oŒA§à
nصee, |^È©O•{±9©)Eâ¤õŽÑO†y² L§¥¢Ÿ5JK, 
)·½5,?y²žm•6ÛáÚf•35.
3‘Øã¥,•{Bå„, ½ÂC•?¿~ê.
©(Xe:©31!¥§£˜ý•£, •¹˜˜m½ÂÚXÚÄ–(J.
31n!¥,y²žm•6PÁ.²;‡A*Ñ•§)·½5ÚK5.31o!¥,y²ž
m•6PÁ.²;‡A*Ñ•§žm•6ÛáÚf•35.
2.ý•£
/Ï©z[14]*:,·‚½Â•§(1.1)#{¤Cþ
η
t
(s) =
(
R
s
0
u(t−r)dr,0 <s6t−τ,
η
τ
(s−t+τ)+
R
t−τ
0
u(t−r)dr,s>t−τ.
(2.1)
-µ
t
(s) = −∂
s
k
t
(s)…k
t
(∞) = 0,K¯K(1.1), ¯K(1.2)Œ±=z•XÚ
∂
t
u−∆u−
R
∞
0
µ
t
(s)∆η
t
(s)ds+f(u) = g
.(2.2)
ƒAÐ->.^‡•













u(x,t) = 0,x∈∂Ω,t>τ,
η
t
(x,s) = 0,(x,s) ∈∂Ω×R
+
,t>τ,
u(x,t) = u
τ
(x,t),x∈Ω,t6τ,
η
τ
(x,s) = η
τ
(x,s),(x,s) ∈Ω×R
+
.
(2.3)
Ù¥u(·) ÷v±e^‡:•3~êRÚ6δ,¦
Z
∞
0
e
−%s
k∇u(−s)k
2
ds6R.
e¡ò¦^PataÚSquassina[15]¥ÎÒ,A= −∆…½Â•D(A) = H
1
0
(Ω)∩H
2
(Ω).•
ÄHilbert;i\˜mxV
s
= D(A
s
2
),¿DƒƒASÈÚ‰ê
hu,vi
s
= hA
s
2
u,A
s
2
vi,kuk
s
= kA
s
2
uk,∀s∈R, ∀u,v∈D(A
s
2
),
Ù¥h·,·iÚk·k•L
2
(Ω)SÈÚ‰ê, @o,H= L
2
(Ω),V
1
= H
1
0
(Ω),V
2
= H
1
0
(Ω)∩H
2
(Ω).
w,, éu?¿s
1
>s
2
, k;i\D(A
s
1
2
)→D(A
s
2
2
), ±9éu¤ks∈[0,
n
2
), këYi
\D(A
s
2
) →L
2n
n−2s
(Ω).
éuz‡½žmtÚz˜‡σ∈R, ŠâPÁÚµ
t
(·) b, ^L
2
µ
t
(R
+
;V
σ
) L«Hilbert
DOI:10.12677/pm.2023.1351501459nØêÆ
oŒA§à
˜m,½ÂXePÁ˜m
M
σ
t
= L
2
µ
t
(R
+
;V
σ
) = {ξ
t
: R
+
→V
σ
|
Z
∞
0
µ
t
(s)kξ
t
(s)k
2
σ
ds<+∞},
¿DƒƒASÈÚ‰ê
hη
t
,ξ
t
i
M
σ
t
=
Z
∞
0
µ
t
(s)hη
t
(s),ξ
t
(s)i
σ
ds,
kξ
t
k
2
M
σ
t
=
Z
∞
0
µ
t
(s)kξ
t
(s)k
2
σ
ds.
y3·‚Ú\Hilbert˜mx
H
σ
t
= V
σ−1
×M
σ
t
,
ƒA‰ê
kzk
2
H
σ
t
= k(u,η
t
)k
2
H
σ
t
= kuk
2
σ−1
+kη
t
k
2
M
σ
t
.
AO/,H
t
= H
0
t
.
Šâ(H
2
),éu?¿η
t
∈M
σ
τ
…z‡t>τ,
kη
t
k
2
M
σ
t
6K
τ
(t)kη
t
k
2
M
σ
τ
,
(2.4)
…këYi\,
M
σ
τ
→M
σ
t
,
l,
H
σ
τ
→H
σ
t
.
Š^3M
σ
t
þ‚5ŽfT
t
½ÂXe
T
t
η
t
= −∂
s
η
t
ٽ•D(T
t
) = {η
t
∈M
σ
τ
|∂
s
η
t
∈M
σ
t
,η
t
(0) = 0}.
KŠâ(H
1
),éz‡½t,¼ês7→µ
t
(s)´A??Œ‡, …∂
s
µ
t
(s) 60. a'[14],·‚
k
hT
t
η
t
,η
t
i
M
σ
t
=
1
2
R
∞
0
∂
s
µ
t
(s)kη
t
(s)k
2
σ
ds60,∀η
t
∈D(T
t
).
(2.5)
w,T
t
´ÑÑŽf.¯¢þ, T
t
´˜mM
σ
t
þm²£Œ+áŽf,w,
T
τ
⊂T
t
.(2.6)
…{T
t
}
t>τ
´Š‘tO\/i\.
DOI:10.12677/pm.2023.1351501460nØêÆ
oŒA§à
d(2.1) ª,Œ•
∂
t
η
t
(s) = −∂
s
η
t
(s)+u(t) = T
t
η
t
+u(t).
(2.7)
e¡Ä–(Jò^5y²¯K(2.2), (2.3)éA);5ÚÑÑ5.
Ún2.1 [9,16]X,BÚY´n‡Banach ˜m.éuT>0,XJX→→B→Y,…
W = {u∈L
p
([0,T];X)|∂
t
u∈L
r
([0,T];Y)},r>1,1 6p<∞,
W
1
= {u∈L
∞
([0,T];X)|∂
t
u∈L
r
([0,T];Y)},r>1.
@o,
W→→L
p
([0,T];B),W
1
→→C([0,T];B).
Ún2.2[3,13,17]bµ∈C
1
(R
+
)∩L
1
(R
+
) ´˜‡šK¼ê, ¿…÷v: XJ•3s
0
∈R
+
,
¦éu¤ks>s
0
, kµ(s)=0 ¤á. d, B
0
,B
1
,B
2
´Banach ˜m, Ù¥B
0
,B
1
´g‡
,…÷v
B
0
→→B
1
→B
2
.
XJC⊂L
2
µ
(R
+
;B
1
)÷v
(i)C3L
2
µ
(R;B
0
)∩H
1
µ
(R
+
;B
2
)k.;
(ii)sup
η∈C
kη(s)k
2
B
1
6h(s),∀s∈R
+
,h(s) ∈L
1
µ
(R
+
),
@oC3L
2
µ
(R
+
;B
1
)Ď;.
Ún2.3[18] (M,d) ´Ýþ˜m,…U(t,τ) ´M¥Lipschitz ëYÄL§,=éu·
~êCÚKÙÕáum
i
,τÚtk
d(U(t,τ)m
1
,U(t,τ)m
2
) 6Ce
K(t−τ)
d(m
1
,m
2
),
é˜ν
1
,ν
2
>0 ÚL
1
,L
2
>0, k
dist
M
(U(t,τ)M
1
,U(t,τ)M
2
) 6L
1
e
−ν
1
(t−τ)
,
dist
M
(U(t,τ)M
2
,U(t,τ)M
3
) 6L
2
e
−ν
2
(t−τ)
,
@o
dist
M
(U(t,τ)M
1
,U(t,τ)M
3
) 6Le
−ν(t−τ)
,
Ù¥ν=
ν
1
ν
2
K+ν
1
+ν
2
…L= CL
1
+L
2
.
Ún2.4[5](È©.Gronwall Øª)τ∈R´½, Λ:[τ,+∞)→R´˜‡ëY¼ê,
DOI:10.12677/pm.2023.1351501461nØêÆ
oŒA§à
éu,ε>0 ±9?¿b>a>τ, ±eÈ©Øª¤á:
Λ(b)+2ε
Z
b
a
Λ(y)dy6Λ(a)+
Z
b
a
q
1
(y)Λ(y)dy+
Z
b
a
q
2
(y)dy,
Ù¥q
1
,q
2
>0 …q
i
∈L
1
loc
[τ,+∞)(i= 1,2)÷v, •3c
1
,c
2
>0, ¦
Z
b
a
q
1
(y)dy6ε(b−a)+c
1
,sup
t>τ
Z
t+1
t
q
2
(y)dy6c
2
,
@o
Λ(t) 6e
c
1

|Λ(τ)|e
−ε(t−τ)
+
c
2
e
ε
1−e
−ε

,∀t>τ.
X[7,9,11,19]¥¤ã, ·‚ Ú\±e'užm•6ÄåXÚVgÚÄ–(J, ^uïÄ)
•ÏÄåÆ.
½Â2.5X
t
´˜xD‰˜m, éuVëêŽfx{U(t,τ):X
τ
→X
t
,τ6t,τ∈R}e÷v
Xe5Ÿ:
(i)éu?¿τ∈R,U(τ,τ) =Id´X
t
þðN;
(ii)éu?¿t>s>τ,τ∈R, kU(t,s)U(s,τ) = U(t,τ),
K¡U(t,τ) ´˜‡L§.
X
t
´D‰˜mx,éuz‡t∈R, X
t
R-¥deª½Â:
B
t
(R) = {z∈X
t
|kzk
X
t
6R}.
·‚^dist
X
t
(A,B)L«l8ÜA⊂X
t
8ÜB⊂X
t
Hausdorff Œål:
dist
X
t
(A,B) = sup
x∈A
dist
X
t
(x,B) = sup
x∈A
inf
y∈B
kx−yk
X
t
.
½Â2.6xC= {C
t
}
t∈R
¥k.8C
t
⊂X
t
¡•˜—k.,XJ•3˜‡~êR>0,¦
C
t
⊂B
t
(R),∀t∈R.
½Â2.7˜—k.xB
t
={B
t
(R
0
)}
t∈R
¡•´'uL§U(t,τ) žm•6áÂ8, XJéu
z‡R>0,•3˜‡t
0
= t
0
(R) 6t…R
0
>0 ¦
τ6t−t
0
⇒U(t,τ)B
τ
(R) ⊂B
t
(R
0
).
§Pk˜‡žm•6áÂ8ž,K¡L§U(t,τ)´ÑÑ.
½Â2.8•xA= {A
t
}
t∈R
,XJA÷v±e5Ÿ:
(i)éu?¿t∈R,z˜‡A
t
3X
t
¥Ñ´;;
DOI:10.12677/pm.2023.1351501462nØêÆ
oŒA§à
(ii)A´.£áÚ, §´˜—k.,¿…éuz˜‡˜—k.8xC= {C
t
}
t∈R
,k
lim
τ→−∞
dist
X
t
(U(t,τ)C
τ
,A
t
) = 0;
¤á.K¡§´'uL§U(t,τ)žm•6áÚf.
½Â2.9 [8,19] XJU(t,τ) ´ìC;,=8Kš˜,
K= {K= {K
t
}
t∈R
|z‡K
t
3X
t
¥;,K´.£áÚf}
@ožm•6áÚfA•3…kA= {A
t
}
t∈R
.AO/, A´•˜.
½Â2.10éu˜‡¼êt→Z(t), …Z(t)∈X
t
´L§U(t,τ) k.;(CBT), …
=
(i)sup
t∈R
kZ(t)k
X
t
<∞;
(ii)Z(t) = U(t,τ)Z(τ),∀τ6t,τ∈R.
½Â2.11žm•6áÚfA= {A
t
}
t∈R
ØC,XJéu¤kτ6t,
U(t,τ)A
τ
= A
t
.
½Â2.12[7,9,11] XJžm•6áÚfA={A
t
}
t∈R
´ØC, @o§•¹L§U(t,τ) ¤
kk.;8ÜCBT, •Ò´`,
A= {Z|t→Z(t) ∈X
t
¿…Z(t) ´L§U(t,τ)CBT}.
3.)·½5ÚK5
•)ÑÑOÚ·½5,·‚I‡y²±eÐÚ(J.
Ún3.1
Γ(u,η
τ
) = 3(t−τ)
2
κ(τ)kuk
2
L
∞
([τ,T];V
σ
)
+2kη
τ
k
2
M
σ
τ
.
@o,·‚kη
t
∈M
σ
τ
⊂M
σ
t
…
kη
t
k
2
M
σ
τ
6Γ(u,η
τ
),∀t∈[τ,T],
…
kη
t
k
2
M
σ
t
6Γ(u,η
τ
)K
τ
(t) ∈L
1
([τ,T]).
Ún3.2XJη
τ
∈D(T
τ
),@oη
t
∈D(T
τ
),éuz‡t∈[τ,T], η
t
∈W
1,∞
([τ,T];M
σ
τ
)…
DOI:10.12677/pm.2023.1351501463nØêÆ
oŒA§à
Øª
∂
t
η
t
= T
τ
η
t
+u(t)
3M
σ
τ
¥¤á.
y²¦^η
τ
∈D(T
τ
) ⊂M
σ
τ
,·‚
∂
s
η
t
(s) =



u(t−s),s6t−τ,
∂
s
η
τ
(s−t+τ),s>t−τ,
(3.1)
∂
t
η
t
(s) =



u(t)−u(t−s),s6t−τ,
u(t)−∂
s
η
τ
(s−t+τ),s>t−τ.
(3.2)
d(2.1) ªŒ•
η
t
(0) = 0.
d,Ï•µ
τ
(·)´šO, …η
τ
∈D(T
τ
) ⊂M
σ
τ
,·‚k
k∂
s
η
t
k
2
M
σ
τ
=
R
t−τ
0
µ
τ
(s)ku(t−s)k
2
σ
ds+
R
∞
t−τ
µ
τ
(s)k∂
s
η
τ
(s−t+τ)k
2
σ
ds
6κ(τ)kuk
2
L
∞
([τ,T];V
σ
)
+k∂
s
η
τ
k
2
M
σ
τ
.
(3.3)
Ïd,∂
s
η
t
∈M
σ
τ
,=,η
t
∈D(T
τ
).
†þãOƒq,·‚k
esssup
t∈[τ,T]
k∂
t
η
t
k
M
σ
τ
<∞.
A^Ún3.1 ·‚uyη
t
∈W
1,∞
([τ,T];M
σ
τ
).
d(3.1) ªÚ(3.2) ª,k
∂
t
η
t
= T
τ
η
t
+u(t)
3M
σ
τ
¤á.
5º3.3duM
σ
τ
⊂M
σ
t
,d(2.6) ª•,éu?¿½t, k
∂
t
η
t
= T
t
η
t
+u(t)(3.4)
3˜mM
σ
t
þ¤á.
5º3.4η∈D(T
τ
),d(2.4) Ú(3.3)ªŒ•
k∂
s
η
t
k
2
M
σ
t
6Ξ(u,η
τ
)K
τ
(t),∀t∈[τ,T],(3.5)
Ù¥Ξ(u,η
τ
) = κ(τ)kuk
2
L
∞
([τ,T];V
σ
)
+k∂
s
η
τ
k
2
M
σ
τ
.
Ún3.5bu∈C([τ,T];V
σ
)¿…η
τ
∈C
1
(R
+
,V
σ
)∩D(T
τ
).@o,éu¤kτ6a6b6T,
DOI:10.12677/pm.2023.1351501464nØêÆ
oŒA§à
keãØª¤á:
kη
b
k
2
M
σ
b
−
R
b
a
R
∞
0
(∂
t
µ
t
(s)+∂
s
µ
t
(s))kη
t
(s)k
2
σ
dsdt6kη
a
k
2
M
σ
a
+2
R
b
a
hu(t),η
t
i
M
σ
t
dt
.(3.6)
Ún3.6éu¤kτ6a6b6T,eãO¤á
kη
b
k
2
M
σ
b
+δ
R
b
a
κ(t)kη
t
(s)k
2
M
σ
t
dsdt6kη
b
k
2
M
σ
b
−
R
b
a
R
∞
0
(∂
t
µ
t
(s)+∂
s
µ
t
(s))kη
t
(s)k
2
σ
dsdt
6kη
a
k
2
M
σ
a
+2
R
b
a
hu(t),η
t
i
M
σ
t
dt
.(3.7)
½Â3.7éu?¿T>τ∈R , g∈L
2
(Ω),…z
τ
= (u
τ
,η
τ
) ∈H
1
τ
,XJ
(i)u(t) ∈L
∞
([τ,T];V
1
),η
t
∈L
∞
([τ,T];M
1
t
);
(ii)¼êη
t
÷vª(2.1) ;
(iii)éuz‡φ∈V
1
…a.e.t∈[τ,T],
h∂
t
u,φi+hu,φi
1
+
Z
∞
0
µ
t
(s)hη
t
(s),φi
1
ds+hf(u),φi= hg,φi.
…¡z(t) = (u(t),η
t
)´¯K(2.2), (2.3)3«m[τ,T] þf).
½n3.8(·½5ÚK5)(1.3), (1.4)ª¤á, …g∈L
2
(Ω). (H
1
)-(H
4
) ¤áž,éz‡
T>τ∈R, Њz(τ)∈H
1
τ
…kz(τ)k
H
1
τ
6R
1
, K3«m[τ,T] ¯K(2.2), (2.3) •3•˜f)
z(t) = (u(t),η
t
),÷v
sup
t>τ
kz(t)k
2
H
1
t
+
Z
t
τ
ku(r)k
2
dr+
Z
t
τ
κ(r)kη
r
k
2
M
1
r
dr+
Z
t
τ
k∂
t
u(r)k
2
1
dr6Q,
?˜Ú,(i) Њz(τ) ∈H
2
τ
…kz(τ)k
H
2
τ
6R
2
,K3«m[τ,T]þ, •3r),k
sup
t>τ
kz(t)k
2
H
2
t
+
Z
t
τ
ku(r)k
2
2
dr+
Z
t
τ
κ(r)kη
r
k
2
M
2
r
dr+
Z
t
τ
k∂
t
u(r)k
2
1
dr6
¯
Q,
¤á.(ii) •3S{z
n
(τ)}∈H
2
τ
, ¦z
n
(τ)→z(τ)∈H
1
τ
, Њz(τ)∈H
1
τ
…kz(τ)k
H
1
τ
6R
1
,
K3«m[τ,T] þ,k
sup
t>τ
kz(t)k
2
H
1
t
+
Z
t
τ
ku(r)k
2
dr+
Z
t
τ
κ(r)kη
r
k
2
M
1
r
dr+
Z
t
τ
k∂
t
u(r)k
2
1
dr6Q,
ùpR
1
ÚR
2
þ•~ê,Q= max{Q
0
,Q
3
,Q
4
}.
¯
Q= max{
¯
Q
0
,
¯
Q
3
,
¯
Q
4
}.d,
kz
1
(t)−z
2
(t)k
2
H
1
t
6Ce
C(R,λ
1
)(t−τ)
kz
1
(τ)−z
2
(τ)k
2
H
1
τ
, t∈[τ,T],
ùpz
1
(t),z
2
(t)´¯K(2.2), (2.3)ü‡),Њz
1
τ
= (u
1
τ
,η
1
τ
),z
2
τ
= (u
2
τ
,η
2
τ
).
DOI:10.12677/pm.2023.1351501465nØêÆ
oŒA§à
y²ò•§(2.2) ¦±u, ·‚k
d
dt
(kuk
2
)+2kuk
2
1
+2hu,η
t
i
M
1
t
+2hf(u),ui−2hg,ui= 0.
(3.8)
Šâ(1.4) ª,·‚k
−2hf(u),ui62(1−θ)kuk
2
1
+4c
f
,
ùp,θ∈(0,1).N´
2hg,ui6θkuk
2
1
+
1
λ
1
θ
kgk
2
.
·‚½Â
N(t) = kuk
2
.
@o
d
dt
N(t)+θkuk
2
1
+2hu,η
t
i
M
1
t
6
1
λ
1
θ
kgk
2
+4c
f
:= Q
0
.
(3.9)
é(3.9) ª3[τ,t] þÈ©,·‚k
N(t)+θ
R
t
τ
ku(r)k
2
1
dr+2
R
t
τ
hu,η
r
i
M
1
r
dr6N(τ)+Q
0
(t−τ), ∀t>τ.
(3.10)
A^½n3.6, ·‚k
N(t)+kη
t
k
2
M
1
t
+θ
R
t
τ
ku(r)k
2
1
dr−
R
t
τ
R
∞
0
(∂
t
µ
t
(s)+∂
s
µ
t
(s))kη
r
(s)k
2
1
dsdr
6N(τ)+kη
τ
k
2
M
1
τ
+Q
0
(t−τ), ∀t>τ.
.
½Â
N(t) = N(t)+kη
t
k
2
M
1
t
.
@o
kz(t)k
2
H
1
t
6N(t) 6(1+
1
λ
1
)kz(t)k
2
H
1
t
.
(3.11)
Ïd,
N(t)+θ
R
t
τ
ku(r)k
2
1
dr−
R
t
τ
R
∞
0
(∂
t
µ
t
(s)+∂
s
µ
t
(s))kη
r
(s)k
2
1
dsdr6N(τ)+Q
0
(t−τ).
(3.12)
¿›X,
sup
t>τ
kz(t)k
2
H
1
t
+
R
t
τ
ku(r)k
2
1
dr+
R
t
τ
κ(r)kη
r
k
2
M
1
r
dr6C(R,T,kgk,θ,δ,λ
1
,c
f
) := Q
1
.(3.13)
aq/
sup
t>τ
kz(t)k
2
H
2
t
+
R
t
τ
ku(r)k
2
2
dr+
R
t
τ
κ(r)kη
r
k
2
M
2
r
dr6C(R,T,kgk,θ,δ,λ
1
,c
f
) :=
¯
Q
.(3.14)
DOI:10.12677/pm.2023.1351501466nØêÆ
oŒA§à
Њz(τ) ∈H
2
τ
ž,ò•§(2.2) ¦±−∆u,·‚k
d
dt
(kuk
2
1
)+2kuk
2
2
+2hu,η
t
i
M
2
t
+2hf(u),−∆ui−2hg,−∆ui= 0.
(3.15)
d(1.3) ª,·‚k
−2hf(u),−∆ui= −2
R
Ω
f
0
(u)|∇u|
2
dx62C
1
kuk
2
1
.
(3.16)
w,,
2hg,−∆ui6kuk
2
2
+kgk
2
.
½Â
N
1
(t) = kuk
2
1
.
@o
d
dt
N
1
(t)+kuk
2
2
+2hu,η
t
i
M
2
t
62C
1
kuk
2
1
+kgk
2
.
(3.17)
é(3.17) ª3[τ,t] þÈ©,·‚k
N
1
(t)+
R
t
τ
kuk
2
2
dr+2
R
t
τ
hu,η
r
i
M
2
r
dr6N
1
(τ)+2C
1
R
t
τ
ku(r)k
2
1
dr+kgk
2
(t−τ).
(3.18)
du½n3.6, ·‚
N
1
(t)+
R
t
τ
kuk
2
2
dr+kη
t
k
2
M
2
t
+δ
R
t
τ
κ(r)kη
r
k
2
M
2
r
dr
6N
1
(τ)+kη
τ
k
2
M
2
τ
+2C
1
R
t
τ
ku(r)k
2
1
dr+kgk
2
(t−τ), ∀t>τ.
(3.19)
½Â
N
1
(t) = N
1
(t)+kη
t
k
2
M
2
t
.
@o
kz(t)k
2
H
2
t
6N
1
(t) 6(1+
1
λ
1
)kz(t)k
2
H
2
t
.
Ïd,
N
1
(t)+
Z
t
τ
kuk
2
2
dr+δ
Z
t
τ
κ(r)kη
r
k
2
M
2
r
dr6N
1
(τ)+2C
1
Z
t
τ
ku(s)k
2
1
ds+kgk
2
(t−τ), ∀t>τ.
A^Gronwall Øª,·‚íäÑ
sup
t>τ
kz(t)k
2
H
2
t
+
R
t
τ
kuk
2
2
dr+
R
t
τ
κ(r)kη
r
k
2
M
2
r
dr
6C(kz(τ)k
H
2
τ
,T,kgk,θ,δ,λ
1
,C
1
,c
f
) := Q
2
.
(3.20)
ò•§(2.2) ¦±∂
t
u
DOI:10.12677/pm.2023.1351501467nØêÆ
oŒA§à
k∂
t
uk
2
= −hu,∂
t
ui−
Z
∞
0
µ
t
(s)h∆η
t
(s),∂
t
uids−hf(u),∂
t
ui+hg,∂
t
ui.
dª(1.3), ·‚k
|hf(u),∂
t
ui|6kf(u)kk∂
t
uk6C(1+ku(t)k
p
1
)k∂
t
uk.
d(H
1
)Œ




−
Z
∞
0
µ
t
(s)h∆η
t
(s),∂
t
uids




6k∂
t
uk
Z
∞
0
µ
t
(s)k∆η
t
(s)kds
6k∂
t
uk

Z
∞
0
µ
t
(s)ds

1
2

Z
∞
0
µ
t
(s)kη
t
(s)k
2
2
ds

1
2
6k∂
t
uk
p
κ(t)kη
t
k
M
2
t
.
@o
k∂
t
uk
2
6C(ku(t)k
2
+1+ku(t)k
p
1
+
p
κ(t)kη
t
k
M
2
t
+kgk)k∂
t
uk
6C(1+Q
1
2
0
+Q
p
2
1
+
p
κ(t)kη
t
k
M
2
t
+kgk)k∂
t
uk
6
1
2
k∂
t
uk
2
1
+C(R,T,c
f
,kgk,θ,δ,λ
1
)(1+κ(t)kη
t
k
2
M
2
t
)
=
1
2
k∂
t
uk
2
+Q
3
(1+κ(t)kη
t
k
2
M
2
t
),∀t∈[τ,T].
(3.21)
Ïd,
R
t
τ
k∂
t
u(s)k
2
ds62Q
3
(1+
R
t
τ
κ(s)kη
s
k
2
M
2
s
ds) 6Q
4
.
(3.22)
{w
n
}´L
2
(Ω)IOÄ,•3V
1
¥IO,¿…−∆w
j
= λ
j
w
j
,j= 1,2,···.{ζ
n
}
´L
2
µ
t
(R
+
;V
1
) IOÄ, •3L
2
µ
t
(R
+
;V
1
) ¥IO, ¿…−∆ζ
j
=λ
j
ζ
j
,j=1,2,···. éu
z‡n∈N, k•‘f˜m½ÂXe:
H
n
= span{w
1
,···,w
n
}⊂V
1
,M
n
= span{ζ
1
,···,ζ
n
}⊂L
2
µ
t
(R
+
;V
1
).
P
n
: V
1
→H
n
L«3H
n
þÝK,Q
n
: L
2
µ
t
(R
+
;V
1
) →M
n
L«3M
n
þÝK.
Щ^‡z
τ
= (u
τ
,η
τ
)Cqu˜‡S{z
τ
n
= (u
τ
n
,η
τ
n
)}⊂H
2
t
,Ù¥
u
τ
n
= P
n
u
τ
→u
τ
inV
1
,
(3.23)
η
τ
n
= Q
n
η
τ
→η
τ
inM
1
t
.
(3.24)
éz‡n∈N, z
n
= (u
n
,η
t
n
)•¯K(2.2), (2.3)%C).Ù¥u
n
= Σ
n
j=1
T
n
j
(t)w
j
,
T
n
j
∈C
1
([τ,T])¿…η
t
n
=Σ
n
j=1
Λ
n
j
(t)ζ
j
, Λ
n
j
∈C
1
([τ,T]).¤±éz‡Á¼êψ∈H
n
, ¿…z‡
t∈[τ,T],z
n
= (u
n
,η
t
n
))ûeã¯K:
h∂
t
u
n
,ψi+hu
n
,ψi
1
+
R
∞
0
µ
t
(s)hη
t
n
(s),ψi
1
ds+hf(u
n
),ψi= hg,ψi,
(3.25)
DOI:10.12677/pm.2023.1351501468nØêÆ
oŒA§à
¿…
η
t
n
(s) =



R
s
0
u
n
(t−r)dr,0 <s6t−τ,
η
τ
n
(s−t+τ)+
R
t−τ
0
u
n
(t−r)dr,s>t−τ.
(3.26)
bψ∈H
m
´½.@oéz‡n>m,·‚k(3.25)ª¤á.‰(3.25)ª¦±ϕ∈
C
∞
0
([τ,T]) ¿…3[τ,T] þ'u(3.25)ª?1È©, ·‚uy
R
T
τ
ϕh∂
t
u
n
(r),ψidr+
R
T
τ
ϕhu
n
(r),ψi
1
dr
+
R
T
τ
ϕ
R
∞
0
µ
r
(s)hη
r
n
(s),ψi
1
dsdr+
R
T
τ
ϕhf(u
n
),ψidr=
R
T
τ
ϕhg,ψidr.
(3.27)
é²w,S{z
n
},OŠ(3.13), (3.20),(3.22)´¤á. @o,
∂
t
u
n
3L
2
([τ,T];H) k.;
u
n
3L
∞
([τ,T];V
2
)k.;
u
n
3L
2
([τ,T];V
2
)k.;
η
t
n
3L
∞
([τ,T];M
2
t
)k..
ϕkf(u
n
)k
L
1+
1
p
6C(1+ku
n
k
p
1
) 6C, ·‚íäÑ
f(u
n
)3L
1+
1
p
(Ω)k..
|^Galerkin %C)z
n
= (u
n
,η
t
n
),·‚••3|z= (u,η
t
),¦(7‡žf)
∂
t
u
n
→∂
t
u†L
2
([τ,T];H
1
)fÂñ;(3.28)
u
n
→u†L
∞
([τ,T];V
2
)f
∗
Âñ;(3.29)
u
n
→u†L
2
([τ,T];V
2
)fÂñ;(3.30)
η
t
n
→q
t
†L
∞
([τ,T];M
2
t
)f
∗
Âñ;(3.31)
f(u
n
) →f(u)†L
1+
1
p
(Ω)fÂñ.(3.32)
A^Ún2.1, ·‚Œ±l(3.28) Ú(3.29)¥¼
u
n
→u†C([τ,T];V
1
),(3.33)
¿…Å:Âñ
DOI:10.12677/pm.2023.1351501469nØêÆ
oŒA§à
u
n
(x,t) →u(x,t) a.e.†Ω×[τ,T].
ŠâfëY5, Œ
f(u
n
(x,t)) →f(u(x,t))a.e. †Ω×[τ,T]
•´¤á.
|^(3.28) Ú(3.30) ª, ·‚Œ±N´/(3.27) †à1˜‘1‘Âñ5.·‚ò
?nÙ{ü‘.
Ï•ψ∈H
n
⊂V
1
,éN´ψ∈P
n
L
p+1
(Ω).Ïd, Šâ(3.32) ª,Œ
hf(u
n
)−f(u),ψidr→0
¤á.duf(u
n
)Úf(u) 3L
1+
1
p
(Ω)¥k.5, A^››Âñ½n,·‚íäÑ
Z
T
τ
ϕhf(u
n
)−f(u),ψidr→0.
·‚Œ±y²ù‡Âñ
R
T
τ
ϕ
R
∞
0
µ
r
(s)hη
r
n
(s),ψi
1
dsdr.•,·‚
¯η
τ
n
= η
τ
n
−η
τ
,¯u
τ
n
= u
τ
n
−u
τ
,
éz‡t∈[τ,T],
¯η
t
n
= η
t
n
−η
t
,¯u
n
(t) = u
n
(t)−u(t).
•Ä(H
2
)¿¦^
¯η
t
n
(s) =



R
s
0
¯u
n
(t−ζ)dζ,0 <s6t−τ,
¯η
τ
n
(s−t+τ)+
R
t−τ
0
¯u
n
(t−ζ)dζ,s>t−τ,
·‚k
k¯η
t
n
k
2
M
1
t
6K
τ
(t)k¯η
t
n
k
2
M
1
τ
=C(T)(
Z
t−τ
0
µ
τ
(s)k
Z
s
0
¯u
n
(t−ζ)dζk
2
1
ds
+
Z
∞
t−τ
µ
τ
(s)k¯η
τ
n
(s−t+τ)+
Z
t−τ
0
¯u
n
(t−ζ)dζk
2
1
ds)
6C(T)(3(T−τ)
2
k¯u
n
k
2
C([τ,T];V
1
)
Z
∞
0
µ
τ
(s)ds+2
Z
∞
0
µ
τ
(s+t−τ)k¯η
τ
n
(s)k
2
1
ds)
6C(T)(3(T−τ)
2
k¯u
n
k
2
C([τ,T];V
1
)
κ(τ)+2k¯η
τ
n
k
2
M
1
τ
) →0,∀t∈[τ,T].
du4••˜5,·‚q
t
= η
t
.
DOI:10.12677/pm.2023.1351501470nØêÆ
oŒA§à
w,,
Z
∞
0
µ
t
(s)h¯η
t
n
(s),ψi
1
ds
=
Z
t−τ
0
µ
t
(s)h
Z
s
0
¯u
n
(t−ζ)dζ,ψi
1
ds+
Z
∞
t−τ
µ
t
(s)h¯η
τ
n
(s−t+τ),ψi
1
ds
+
Z
∞
t−τ
µ
t
(s)h
Z
t−τ
0
¯u
n
(t−ζ)dζ,ψi
1
ds
=
Z
t−τ
0
µ
t
(s)
Z
s
0
h¯u
n
(t−ζ),ψi
1
dζds+
Z
∞
0
µ
t
(s+t−τ)h¯η
τ
n
(s),ψi
1
ds
+
Z
∞
t−τ
µ
t
(s)s
Z
t
τ
h¯u
n
(ζ),ψi
1
dζds.
2g¦^(H
2
),·‚
Z
t−τ
0
µ
t
(s)
Z
s
0
h¯u
n
(t−ζ),ψi
1
dζds
6
Z
t−τ
0
µ
t
(s)s
Z
s
0
k¯u
n
(t−ζ)k
1
kψk
1
dζds
6k¯u
n
k
C([τ,T];V
1
)
kψk
1
(T−τ)
2
K
τ
(t)κ(τ) →0,a.e.t∈[τ,T],
Z
∞
t−τ
µ
t
(s)
Z
t
τ
h¯u
n
(ζ),ψi
1
dζds
6
Z
∞
t−τ
µ
t
(s)s
Z
t
τ
k¯u
n
(ζ)k
1
kψk
1
dζds
6k¯u
n
k
C([τ,T];V
1
)
kψk
1
(T−τ)
2
K
τ
(t)κ(τ) →0,a.e.t∈[τ,T],
Z
∞
0
µ
t
(s+t−τ)h¯η
τ
n
(s),ψi
1
ds6kψk
1
K
τ
(t)
p
κ(τ)k¯η
τ
n
k
M
1
τ
→0,a.e.t∈[τ,T].
(J,
lim
n→∞
Z
∞
0
µ
t
(s)h¯η
t
n
(s),ψi
1
ds= 0,a.e.t∈[τ,T].
¿…




Z
∞
0
µ
t
(s)h¯η
t
n
(s),ψi
1
ds




6
Z
∞
0
µ
t
(s)k¯η
t
n
(s)k
1
kψk
1
ds
6kψk
1
p
K
τ
(t)κ(τ)k¯η
t
n
k
M
1
t
∈L
1
([τ,T]).
A^Lebesgue››Âñ½n, Œ
lim
n→∞
Z
T
τ
ϕ
Z
∞
0
µ
r
(s)h¯η
r
n
(s),ψi
1
dsdr= 0.
DOI:10.12677/pm.2023.1351501471nØêÆ
oŒA§à
•,·‚¯K(2.2) Ú(2.3)f)z= (u,η
t
).
y3,·‚y²f)'uЊëY•65, •=•˜5.b
z
1
(t) = (u
1
(t),η
t
1
),z
2
(t) = (u
2
(t),η
t
2
)
´¯K(2.2) Ú(2.3) 3[τ,T] þü‡f).@o¯z(t) = z
1
(t)−z
2
(t) = (¯u(t),¯η
t
)÷v
∂
t
¯u+A¯u+
R
∞
0
µ
t
(s)A¯η
t
(s)ds= −f(u
1
)+f(u
2
),
(3.34)
Ù¥
¯η
t
(s) =



R
s
0
¯u(t−r)dr,s6t−τ,
¯η
τ
(s−t+τ)+
R
t−τ
0
¯u(t−r)dr,s>t−τ.
(3.35)
‰(3.35) ¦±¯u, ·‚k
d
dt
F(t)+2
Z
∞
0
µ
t
(s)h¯η
t
(s),¯u(t)i
1
ds
= −2k¯uk
2
1
−2hf(u
1
)−f(u
2
),¯u(t)i
6−
2
λ
1
k¯uk
2
+C(1+ku
1
k
p−1
L
p+1
+ku
2
k
p−1
L
p+1
)k¯uk
2
L
p+1
6−
2
λ
1
k¯uk
2
+C(1+ku
1
k
p−1
1
+ku
2
k
p−1
1
)k¯uk
2
1
6C(R,λ
1
)F(t),t∈[τ,T],
Ù¥F(t) = (k¯uk
2
).3[τ,t] þÈ©,·‚uy
F(t)+2
R
t
τ
h¯u(y),¯η
y
i
M
1
y
dy6F(τ)+C(R,λ
1
)
R
t
τ
F(y)dy, t∈[τ,T].
(3.36)
Šâ½n3.6, ·‚•
k¯η
t
k
2
M
1
t
+δ
R
t
τ
κ(y)k¯η
y
(s)k
2
M
1
y
dy6k¯η
τ
k
2
M
1
τ
+2
R
t
τ
h¯u,¯η
y
i
M
1
y
dy.
(3.37)
F(t) = F(t)+k¯η
t
k
2
M
1
t
,·‚k
k¯z(t)k
2
H
1
t
6F(t) 6Ck¯z(t)k
2
H
1
t
.
(Ü(3.36) Ú(3.37), ·‚k
F(t) 6F(τ)+C(R,λ
1
)
Z
t
τ
F(y)dy.
DOI:10.12677/pm.2023.1351501472nØêÆ
oŒA§à
A^Gronwall Øª,·‚¼
k¯z(t)k
2
H
1
t
6Ce
C(R,λ
1
)(t−τ)
k¯z(τ)k
2
H
1
τ
, t∈[τ,T].
†dÓž,·‚y²¯K(2.2) Ú(2.3)f)•˜5.
du½n3.8, L§U(t,τ)ÎܯK(2.2) Ú(2.3)½ÂXe:
z(t) = U(t,τ)z(τ) : H
1
τ
→H
1
t
,
ù‡lH
1
τ
H
1
t
L§´ëY.
4.žm•6ÛáÚf•35
4.1.žm•6áÂ83H
1
t
¥•35
½n4.1(ÑÑ5)b(1.3)Ú(1.4)ª±9^‡(H
1
)-(H
4
)¤á,g∈L
2
(Ω),•3S{z
n
(τ)}∈
H
2
τ
, ¦z
n
(τ)→z(τ).éu?¿Ð©^‡z(τ)∈B
τ
(R)⊂H
1
τ
, @o•3R
0
>0, ¦ƒA¯K
(2.2),(2.3) L§U(t,τ)Pk˜‡žm•6áÂ8, ¿›xB
t
= {B
t
(R
0
)}
t∈R
.
y²¦^Poincar´eØªÚ(H
4
),·‚Ul(3.18) ª¥¼
N(t)+
θλ
1
2
R
t
τ
ku(r)k
2
dr+
θ
2
R
t
τ
ku(r)k
2
1
dr+δ
R
t
τ
κ(r)kη
r
(s)k
2
M
1
t
dsdr
6N(τ)+Q
1
(t−τ).
(4.1)
¿›X,
N(t)+2ε
Z
t
τ
N(r)dr6N(τ)+ε
Z
t
τ
N(r)dr+Q
1
(t−τ),
ùp,ε= min{
1
2
θλ
1
,
1
2
θ,δinf
r∈[τ,t]
κ(r)}.A^Ún2.4 ,·‚íäÑ
N(t) 6N(τ)e
−ε(t−τ)
+
Q
1
e
ε
1−e
−ε
.
d,
kz(t)k
2
H
1
t
6N(t) 6(1+
1
λ
1
)kz(τ)k
2
H
1
τ
e
−ε(t−τ)
+
R
2
0
2
,
(4.2)
Ù¥R
2
0
= 2
Q
1
e
ε
1−e
−ε
.@oéz‡R>0,•3˜‡t
0
= t
0
(R) =
1
ε
ln
2(1+
1
λ
1
)R
2
R
2
0
6t¿…R
0
>0 ¦
τ6t−t
0
⇒U(t,τ)B
τ
(R) ⊂B
t
(R
0
).
4.2.žm•6ÛáÂ83H
1
t
¥•35
e5,·‚òy²)L§U(t,τ) ƒA(2.2), (2.3) éAìC;5. •d, ·‚I‡éš‚
DOI:10.12677/pm.2023.1351501473nØêÆ
oŒA§à
5‘,), )L§?1˜©).
'uš‚5‘f,É[2]éu, ·‚òÙ©)Xe:
f(s) = f
0
(s)+f
1
(s),
Ù¥f
0
,f
1
∈C
1
(R)¿…÷v:
|f
0
0
(u)|6C(1+|u|
p−1
),∀u∈R,1 6p63,(4.3)
f
0
(u)u>0,∀u∈R,(4.4)
|f
0
1
(u)|6C(1+|u|
γ
),∀u∈R,1 6γ<2,(4.5)
liminf
|u|→∞
f
0
1
(u) >−λ
1
.(4.6)
É[20]gŽK•,ò¯K(2.2),(2.3) )z(t) = (u(t),η
t
)©)•:
z(t) = z
1
(t)+z
2
(t),u(t) = v(t)+w(t),η
t
= ζ
t
+ξ
t
,
ùp,z
1
(t) = (v(t),ζ
t
)…z
2
(t) = (w(t),ξ
t
))ûeã¯K:















∂
t
v+Av+
Z
∞
0
µ
t
(s)Aζ
t
(s)ds+f
0
(v) = 0,
∂
t
ζ
t
+∂
s
ζ
t
= v(t),
v(x,t)|
∂Ω
= 0,v(x,τ) = u
τ
(x,t),
ζ
t
(x,s)|
∂Ω
= 0,ζ
τ
(x,s) = η
τ
(x,s),
(4.7)
Ù¥,
ζ
t
(s) =



R
s
0
v(t−r)dr,0 <s6t−τ,
ζ
τ
(s−t+τ)+
R
t−τ
0
v(t−r)dr,s>t−τ,
¿…

















∂
t
w+Aw+
Z
∞
0
µ
t
(s)Aξ
t
(s)ds+f(u)−f
0
(v) = g,
∂
t
ξ
t
+∂
s
ξ
t
= w(t),
w(x,t)|
∂Ω
= 0,w(x,τ) = 0,
ξ
t
(x,s)|
∂Ω
= 0,ξ
τ
(x,s) = 0,
(4.8)
Ù¥,
ξ
t
(s) =



R
s
0
w(t−r)dr,0 <s6t−τ,
R
t−τ
0
w(t−r)dr,s>t−τ.
aqu½n3.8 y²,•§(4.7)Ú(4.8))•35Ú•˜5Œ±¼.
DOI:10.12677/pm.2023.1351501474nØêÆ
oŒA§à
?˜Ú,N´•, L§U
1
(t,τ) ÚU
2
(t,τ) éA•§(4.7) Ú(4.8).{üå„, ·‚
U(t,τ)z
τ
= U
1
(t,τ)z
1
(τ)+U
2
(t,τ)z
2
(τ) = z
1
(t)+z
2
(t).
aqu½n4.1, Œ±Xe(J.
Ún4.2bf
0
÷v(4.3) Ú(4.4) .XJ(H
1
)-(H
4
)¤á, @o•§(4.7) ÷vO:
(i)•3S{z
n
(τ)}∈H
2
τ
,¦z
n
(τ) →z(τ).Њz
1
(τ) ∈H
1
τ
…kz
1
(τ)k
H
1
τ
6R
1
,
kz
1
(t)k
2
H
1
t
6C(R
1
)e
−ε
1
(t−τ)
.
(4.9)
(ii)Њz
1
(τ) ∈H
2
τ
…kz
1
(τ)k
H
2
τ
6R
2
,
kz
1
(t)k
2
H
2
t
6C(R
2
)e
−ε
1
(t−τ)
.
(4.10)
ùpR
1
ÚR
2
þ•~ê.
y²ò•§(4.7) ¦±v,
d
dt
(kvk
2
)+2kvk
2
1
+2hv,ζ
t
i
M
1
t
+2hf
0
(v),vi= 0.
(4.11)
·‚½Â
F(t) = kvk
2
.
•Ä(4.4), ·‚íäÑ
d
dt
F(t)+2kvk
2
1
+2hv,ζ
t
i
M
1
t
60.
(4.12)
3[τ,t]‰(4.11) ªÈ©,·‚k
F(t)+2
R
t
τ
kv(r)k
2
1
dr+2
R
t
τ
hv,ζ
r
i
M
1
r
dr6F(τ),∀t>τ.
(4.13)
du½n3.6, ·‚k
F(t)+kζ
t
k
2
M
1
t
+2
Z
t
τ
kv(r)k
2
1
dr+δ
Z
t
τ
κ(r)kζ
r
(s)k
2
M
1
t
dr
6F(τ)+kζ
τ
k
2
M
1
τ
, ∀t>τ.
½Â
F(t) = F(t)+kζ
t
k
2
M
1
t
.
@o,
F(t)+2
R
t
τ
kv(r)k
2
1
dr+δ
R
t
τ
κ(r)kζ
r
(s)k
2
M
1
t
dr6F(τ).
(4.14)
DOI:10.12677/pm.2023.1351501475nØêÆ
oŒA§à
•Ò´`,
F(t)+2ε
1
Z
t
τ
F(r)dr6F(τ)+ε
1
Z
t
τ
F(r)dr,
ùp,ε
1
= min{λ
1
,1,δinf
r∈[τ,t]
κ(r)}.dÚn2.4, ·‚¼
F(t) 6F(τ)e
−ε
1
(t−τ)
.
?˜Ú,
kz
1
(t)k
2
H
1
τ
= F(t) 6C(R
1
,λ
1
)e
−ε
1
(t−τ)
,
(4.15)
Ù¥kz(τ)k
2
H
1
τ
6R
1
.
Њz
1
(τ) ∈H
2
τ
ž,ò•§(4.7) ¦±−∆v,
d
dt
(kvk
2
1
)+2kvk
2
2
+2hv,ζ
t
i
M
2
t
+2hf
0
(v),vi= 0.
(4.16)
·‚½Â
F
1
(t) = kvk
2
1
.
•Ä(4.4), ·‚íäÑ
d
dt
F
1
(t)+2kvk
2
2
+2hv,ζ
t
i
M
2
t
60.
(4.17)
3[τ,t]‰(4.17) ªÈ©,·‚k
F
1
(t)+2
R
t
τ
kv(r)k
2
2
dr+2
R
t
τ
hv,ζ
r
i
M
2
r
dr6F
1
(τ),∀t>τ.
(4.18)
du½n3.6, ·‚k
F
1
(t)+kζ
t
k
2
M
2
t
+2
Z
t
τ
kv(r)k
2
2
dr+δ
Z
t
τ
κ(r)kζ
r
(s)k
2
M
2
t
dr
6F
1
(τ)+kζ
τ
k
2
M
2
τ
, ∀t>τ.
½Â
F
1
(t) = F
1
(t)+kζ
t
k
2
M
2
t
.
@o,
F
1
(t)+2
R
t
τ
kv(r)k
2
2
dr+δ
R
t
τ
κ(r)kζ
r
(s)k
2
M
2
t
dr6F
1
(τ).
(4.19)
•Ò´`,
F
1
(t)+2ε
1
Z
t
τ
F
1
(r)dr6F
1
(τ)+ε
1
Z
t
τ
F
1
(r)dr,
ùp,ε
1
= min{λ
1
,1,δinf
r∈[τ,t]
κ(r)}.dÚn2.4, ·‚¼
DOI:10.12677/pm.2023.1351501476nØêÆ
oŒA§à
F
1
(t) 6F
1
(τ)e
−ε
1
(t−τ)
.
?˜Ú,
kz
1
(t)k
2
H
2
τ
= F
1
(t) 6C(R
2
,λ
1
)e
−ε
1
(t−τ)
,
(4.20)
Ù¥kz(τ)k
2
H
2
τ
6R
2
.
Ún4.3bš‚5‘f÷v(1.3), (1.4) Ú(4.3)-(4.6).XJg∈L
2
(Ω) ¿…(H
1
)-(H
4
) ¤á,
@oéuzãžmT>0, •3S{z
n
(τ)}∈H
2
τ
,¦z
n
(τ) →z(τ).éuЩ^‡z
τ
∈H
1
τ
,•3
˜‡~êI= I(kgk,kz
τ
k
H
1
τ
,T,λ
1
),¦(4.8) )÷v:
kU
2
(T+τ,τ)z
2
(τ)k
2
H
4
3
T+τ
= kz
2
(T+τ)k
2
H
4
3
T+τ
6I.
(4.21)
y²ò•§(4.8) 1˜‡•§¦±A
1
3
w,Œ
d
dt
G(t)+2kw(t)k
2
4
3
+2hξ
t
,w(t)i
M
4
3
t
= 2hg,A
1
3
wi−2hf
1
(v),A
1
3
wi−2hf(u)−f(v),A
1
3
wi,
(4.22)
Ù¥G(t) = kw(t)k
2
1
3
.N´•
2|hg,A
1
3
wi|6
1
4
kwk
2
4
3
+
4kgk
2
λ
2
3
1
.
(4.23)
·‚Œ±l(4.5) Ú(1.3) ¥¼
−2hf
1
(v),A
1
3
wi6C
R
Ω
(1+|v|
γ
)|A
1
3
w|dx
6C(
R
Ω
(1+|v|
18γ
13
)dx)
13
18
(
R
Ω
|A
1
3
w|
18
5
dx)
5
18
6C(1+kvk
γ
L
6
)kA
1
3
wk
L
18
5
6C(R,λ
1
)kwk
4
3
6
1
4
kwk
2
4
3
+C
(4.24)
…
−2hf(u)−f(v),A
1
3
wi6C
R
Ω
(1+|u|
p−1
+|v|
p−1
)|w||A
1
3
w|dx
6C(kuk
p−1
L
3(p−1)
2
+kvk
p−1
L
3(p−1)
2
)kwk
L
18
kA
1
3
wk
L
18
5
6C(kuk
p−1
1
+kvk
p−1
1
)kwk
L
18
kA
1
3
wk
L
18
5
6c
0
kwk
2
4
3
,
(4.25)
Ù¥c
0
= c
0
(Q
0
),¿…·‚¦^i\V
4
3
→L
18
,V
2
3
→L
18
5
,V
1
→L
6
.
Ïd,r(4.23)-(4.25) \(4.22),·‚k
d
dt
G(t)+2hξ
t
,w(t)i
M
4
3
t
6(c
0
−
3
2
)kw(t)k
2
4
3
+C.
(4.26)
DOI:10.12677/pm.2023.1351501477nØêÆ
oŒA§à
3[τ,T+τ] È©,·‚k
G(T+τ)+2
R
T+τ
τ
hξ
r
,w(r)i
M
4
3
r
dr6G(τ)+(c
0
−
3
2
)
R
T+τ
τ
kw(r)k
2
4
3
dr+CT.
(4.27)
½Â
G(t) = kw(t)k
2
1
3
+kξ
t
k
2
M
4
3
t
.
du½n3.6, ·‚k
G(T+τ)+δ
R
T+τ
τ
κ(r)kξ
r
(s)k
2
M
4
3
r
dr6G(τ)+(c
0
−
3
2
)
R
T+τ
τ
kw(r)k
2
4
3
dr+CT.
(4.28)
•Ò´`
G(T+τ) 6G(τ)+c
1
R
T+τ
τ
G(r)dr+CT.
(4.29)
dGronwall Øª,·‚íäÑ
G(T+τ) 6e
c
1
T
(G(τ)+CT) = CTe
c
1
T
.
aq,
kz
2
(T+τ)k
2
H
4
3
T+τ
6G(T+τ) 6CTe
c
1
T
= I.
d,éu?¿ξ
τ
∈L
2
µ
τ
(R
+
;V
1
),Cauchy ¯K(„[3,12,18])



∂
t
ξ
t
= −∂
s
ξ
t
+w,t>τ,
ξ
τ
= ξ
τ
,
(4.30)
k•˜)ξ
t
∈C([τ,+∞);L
µ
τ
(R
+
;V
1
))…kwªLˆ:
ξ
t
(s) =



R
s
0
w(t−r)dr,0 <s6t−τ,
R
t−τ
0
w(t−r)dr,s>t−τ.
(4.31)
·‚^B
t
L«k½n4.1 ¼žm•6áÂ8.@o, ·‚
K
T
= ΠU
2
(T,τ)B
τ
,
ùp,Π : V
1
×L
µ
t
(R
+
;V
1
) →L
µ
t
(R
+
;V
1
)´˜‡ÝKŽf.
Ún4.4z
2
(t) = (w(t),ξ
t
)´¯K(4.8)).bš‚5‘÷v(1.3),(1.4)…(4.3)−(4.6).X
Jg∈L
2
(Ω) ¿…(H
1
)-(H
4
) ¤á, @o, éz‡‰½T>τ, •3˜‡~êI
1
=I
1
(kB
τ
k
H
1
τ
),
¦
(i)K
T
3L
2
µ
τ
(R
+
);V
4
3
)∩H
1
µ
τ
(R
+
;V
1
)k.;
DOI:10.12677/pm.2023.1351501478nØêÆ
oŒA§à
(ii)sup
η
T
∈K
T
kξ
T
(s)k
2
1
6I
1
.
y²3(4.31) *:e,·‚íäÑ
∂
s
ξ
t
(s) =



w(t−s),0 <s6t−τ,
0,s>t−τ.
(4.32)
duÚn4.3, §Œ±y²(i) ¤á.
e5,´
kξ
T
(s)k
1
6



R
s
0
kw(T−r)k
1
dr6
R
T−τ
0
kw(T−r)k
1
dr,0 <s6T−τ,
R
T−τ
0
kw(T−r)k
1
dr,s>T−τ,
(4.33)
¤á.d(4.22) ª,(ii)•Œ±y.
Ún4.53Ún4.4 b¤áe.@oéuz‡½T>τ, U
2
(T,τ)B
τ
3H
1
T
Ď;.
y²¯¢þ,A^Ún2.2 ·‚•K
T
3L
µ
τ
(R
+
;V
1
)ƒé;. ¿…2g¦^(H
2
)b, ·
‚K
T
3L
µ
t
(R
+
;V
1
)ƒé;. d,k;i\: V
3
4
→→V
1
,·‚íäÑ
U
2
(T,τ)B
τ
3H
1
T
Ď;.
Ún4.6U(t,τ)´¯K(2.2), (2.3))L§.bš‚5‘f÷v(1.3), (1.4)Ú
(4.3)-(4.6).XJg∈L
2
(Ω)¿…(H
1
)-(H
4
)¤á,@oL§U(t,τ)Pkžm•6áÂ8A= {A
t
}
t∈R
inH
1
t
.d, áÚfA´ØC, ¿›X,
U(t,τ)A
τ
= A
t
,∀t>τ.
y²B
t
= {B
t
(R
0
)}
t∈R
´k½n4.1¼žm•6áÂ8. dÚn4.2ÚÚn4.3, éuv
Œ~êR
1
,´
xB
1
3
t
= {B
1
3
t
(R
1
)}
t∈R
´.£áÚ,
ùpB
1
3
t
(R
1
) = {ξ|kξk
H
4
3
t
6R
1
}.
¯¢þ,(Ü(4.9) Ú(4.21),·‚íäÑ
dist
H
1
t
(U(t,τ)B
τ
,B
1
3
t
) 6dist
H
1
t
(U
1
(t,τ)B
τ
+U
2
(t,τ)B
τ
,B
1
3
t
)
= dist
H
1
t
(U
1
(t,τ)B
τ
,B
1
3
t
)
6C(kB
τ
k
H
1
τ
)e
−ε
1
(t−τ)
,
ùp,ε
1
= min{λ
1
,1,δinf
r∈[τ,t]
κ(r)}.
DOI:10.12677/pm.2023.1351501479nØêÆ
oŒA§à
é?Ûk.8(3H
1
τ
)B
τ
= {B
τ
(R)}
τ∈R
,k½n4.1, •3˜‡t
0
= t
0
(R) ¦
τ6t−t
0
⇒U(t,τ)B
τ
(R) ⊂B
t
(R
0
).
Ïd,
dist
H
1
t
(U(t,τ)B
τ
,B
t
) 6e
ε
1
t
0
e
−ε
1
(t−τ)
,
Ù¥=sup
06t−τ6t
0
kU(t,τ)B
τ
k
H
1
t
.
A^Ún2.3 Ú½n3.8, ·‚Œ±¼
dist
H
1
t
(U(t,τ)B
τ
,B
1
3
t
) 6C(kB
τ
k
H
1
τ
)e
−ε
1
(t−τ)
.
(ÜÚn4.5, ·‚k¯K(2.2), (2.3) ƒAL§U(t,τ) 3H
1
t
¥ìC;5. Ïd,A^½n2.7,
½n2.10 Ú½n3.8,·‚Œ±y²žm•6áÂ8A={A
t
}
t∈R
3H
1
t
ØC5Ú•35, •Ò´
`
U(t,τ)A
τ
= A
t
,
¿…
A= {Z|t→Z(t) ∈H
1
t
…Z(t) ´L§U(t,τ)CBT}.
Ä7‘8
I[g,‰ÆÄ7‘8(1OÒ:11961059; 12061062)"
ë•©z
[1]Aifantis,E.C.(1980)OntheProblemofDiffusioninSolids.ActaMechanica,37,265-296.
https://doi.org/10.1007/BF01202949
[2]Arrieta,J.,Carvalho,A.N.andHale,J.K.(1992)ADampedHyperbolicEquationswith
CriticalExponents.CommunicationsinPartialDifferentialEquations,17,841-866.
https://doi.org/10.1080/03605309208820866
[3]Borini,S.andPata,V.(1999)UniformAttractorsforaStronglyDampedWaveEquations
withLinearMemory.AsymptoticAnalysis,20,263-277.
[4]Conti,M.,Danese,V.,Giorgi,C.andPata,V.(2018)AModelofViscoelasticitywithTime-
DependentMemoryKernels.AmericanJournalofMathematics,140,349-389.
https://doi.org/10.1353/ajm.2018.0008
DOI:10.12677/pm.2023.1351501480nØêÆ
oŒA§à
[5]Conti,M.,Danese,V.andPata,V.(2018)ViscoelasticitywithTime-DependentMemory
Kernels.PartII:AsymptoticBehaviorofSolutions.AmericanJournalofMathematics,140,
1687-1721.https://doi.org/10.1353/ajm.2018.0049
[6]Chen,P.J.and Gurtin,M.E. (1968)On aTheory ofHeatConductionInvolvingTwoTemper-
atures.Zeitschriftf¨urAngewandteMathematikundPhysikZAMP,19,614-627.
https://doi.org/10.1007/BF01594969
[7]Conti,M.,Pata,V.andTemam,R.(2013)AttractorsfortheProcessesonTime-Dependent
Spaces.ApplicationstoWaveEquations.JournalofDifferentialEquations,255,1254-1277.
https://doi.org/10.1016/j.jde.2013.05.013
[8]Chepyzhov, V.V.andVishik, M.I.(2002)AttractorsforEquationsofMathematicalPhysics.In:
AMSeBooks:ColloquiumPublications,Vol.49,AmericanMathematicalSociety,Providence,
RI.https://doi.org/10.1090/coll/049
[9]Conti,M.andPata,V.(2014)AsymptoticStructureoftheAttractorforProcessesonTime-
DependentSpaces.NonlinearAnalysis:RealWorldApplications,19,1-10.
https://doi.org/10.1016/j.nonrwa.2014.02.002
[10]Dafermos, C.M. (1970)Asymptotic Stability inViscoelasticity.ArchiveforRationalMechanics
andAnalysis,37,297-308.https://doi.org/10.1007/BF00251609
[11]Ding, T. and Liu, Y.F. (2015) Time-DependentGlobal Attractor forthe Nonclassical Diffusion
Equations. ApplicableAnalysis, 94,1439-1449. https://doi.org/10.1080/00036811.2014.933475
[12]Coleman,B.D.andGurtin,M.E.(1967)EquipressenceandConstitutiveEquationsforRigid
HeatConductors.Zeitschriftf¨urangewandteMathematikundPhysikZAMP,18,199-208.
https://doi.org/10.1007/BF01596912
[13]Gatti, C., Miranville, A., Pata, V. and Zelik, S.V. (2008) Attractors for Semi-Linear Equations
ofViscoelasticitywithVeryLowDissipation.RockyMountainJournalofMathematics,38,
1117-1138.https://doi.org/10.1216/RMJ-2008-38-4-1117
[14]Grasselli,M.andPata,V.(2002)UniformAttractorsofNonautonomousDynamicalSystems
withMemory.ProgressinNonlinearDifferentialEquationsandTheirApplications,50,155-
178.https://doi.org/10.1007/978-3-0348-8221-79
[15]Pata, V. and Squassina, M. (2005) On the Strongly Damped Wave Equation. Communications
inMathematicalPhysics,253,511-533.https://doi.org/10.1007/s00220-004-1233-1
[16]Simon,J.(1987)CompactSetsintheSpaceL
p
(0,T;B).AnnalidiMatematicaPuraedAp-
plicata,146,65-96.https://doi.org/10.1007/BF01762360
[17]Pata,V.andZucchi,A.(2001)AttractorsforaDampedHyperbolicEquationwithLinear
Memory.AdvancesinMathematicalSciencesandApplications,11,505-529.
[18]Zelik,S.V.(2004)AsymptoticRegularityofSolutionsofaNonautonomousDampedWave
EquationwithaCriticalGrowthExponent.CommunicationsonPureandAppliedAnalysis,
3,921-934.https://doi.org/10.3934/cpaa.2004.3.921
DOI:10.12677/pm.2023.1351501481nØêÆ
oŒA§à
[19]Meng,F.J.,Wu,J.andZhao,C.X.(2019)Time-DependentGlobalAttractorforExtensible
BergerEquation.JournalofMathematicalAnalysisandApplications,469,1045-1069.
https://doi.org/10.1016/j.jmaa.2018.09.050
[20]Sun,C.Y.,Wang,S.Y.andZhong,C.K.(2007)GlobalAttractorsforaNonclassicalDiffusion
Equation.ActaMathematicaSinica,23,1271-1280.
https://doi.org/10.1007/s10114-005-0909-6
DOI:10.12677/pm.2023.1351501482nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.