设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(5),1508-1515
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135153
Ú
á
Ü
ý
•
ä
'
u
†
Ú
µ
4
5
444
˜˜˜
∗
§§§
¡¡¡
ÿÿÿ
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2023
c
4
23
F
¶
¹
^
F
Ï
µ
2023
c
5
24
F
¶
u
Ù
F
Ï
µ
2023
c
5
31
F
Á
‡
©
|
^
†
R
-
ý
•
ä
'
u
†
Ú
µ
4
5
,
ï
Ä
Ú
á
Ü
S
ý
•
ä
'
u
†
Ú
µ
4
5
"
'
…
c
ý
•
ä
§
†
Ú
§
µ
4
5
PreenvelopeofMorphismsandShort
ExactSequencesontheClosureof
DirectSum
ShiyaoLiu
∗
,XiaoyanYang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.23
rd
,2023;accepted:May24
th
,2023;published:May31
st
,2023
Abstract
Inthispaper,westudythatthepreenvelopesofmorphismsandshortexactsequences
∗
1
˜
Š
ö
"
©
Ù
Ú
^
:
4
˜
,
¡
ÿ
.
Ú
á
Ü
ý
•
ä
'
u
†
Ú
µ
4
5
[J].
n
Ø
ê
Æ
,2023,13(5):1508-1515.
DOI:10.12677/pm.2023.135153
4
˜
§
¡
ÿ
areclosedunderdirectsumsusingthefactthatt hepreenvelopeofleft
R
-moduleis
closedunderdirectsums.
Keywords
Preenvelope,DirectSum,Closure
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
3
©
¥
,
X
J
v
k
A
O
•
Ñ
,
¤
k
Ñ
´
†
R
-
,
¿
^
R
-Mod
L
«
†
R
-
‰
Æ
.
%
C
n
Ø
=
ý
•
ä
Ú
ý
CX
•
3
5
´
ƒ
é
Ó
N
“
ê
¥
•
Ä
V
g
ƒ
˜
.
3
20
-
V
80
c
“
Ð
Ï
,
Enochs
3
[1]
¥
Ú
Auslander
<
3
[2]
¥
J
Ñ
^
Ó
N
“
ê
•{
ï
Ä
(
ý
)
•
ä
Ú
(
ý
)
C
X
.
Š
•
%
C
n
Ø
í
2
, 2013
c
,
É
k
Ÿ
Ú
GuilAsensio
<
3
[3]
¥
‰
Ñ
n
Ž
%
C
n
Ø
½
Â
¿
y
²
‰
Æ
'
uý
•
ä
†ý
CX
˜
²
;
Ú
n
3
n
Ž
%
C
¥
•
´
¤
á
.
3
n
Ž
%
C
n
Ø
¥
,
&?
˜
A
Ï
n
Ž
(
ý
)
•
ä
Ú
(
ý
)
CX
•
3
5
ä
k
-
‡
¿Â
.
I
´
†
R
-
‰
Æ
˜
‡
†
½
m
n
Ž
,2018
c
, Mao
3
[4]
¥
ï
Ä
R
-
I
-
ý
•
ä
Ú
I
-
ý
CX
'
u
†
È
Ú
†
Ú
±
9
*
Ü
µ
4
5
,
¿
ï
á
R
-
ý
•
ä
ý
CX
Ú
ý
•
ä
ý
CX
ƒ
m
'
X
.
2020
c
,Mao
3
[5]
¥
0
á
Ü
S
ý
•
ä
Ú
ý
CX
,
¿
R
-
ý
CX
Ú
á
Ü
ý
CX
ƒ
m
é
X
.
É
d
é
u
,
©·
‚
l
†
R
-
ý
•
ä
'
u
†
Ú
µ
4
5
Ñ
u
,
?
Ø
Ú
á
Ü
S
ý
•
ä
'
u
†
Ú
µ
4
5
.
é
ó
/
,
•
Œ
±
|
^
R
-
ý
CX
'
u
†
È
µ
4
5
,
?
Ø
Ú
á
Ü
ý
CX
'
u
†
È
µ
4
5
.
Ï
•
y
²
´
é
ó
,
¤
±
3
©
¥
Ø
Š
•
ã
.
2.
ý
•
£
e
¡
‰
Ñ
©
^
˜
Ä
V
g
.
½
Â
1
[6]
¡
R
-Mor
´
‰
Æ
,
Ù
¥
,
(1)
R
-Mor
¥
é
–
´
R
-Mod
¥
†
R
-
Ó
,
DOI:10.12677/pm.2023.1351531509
n
Ø
ê
Æ
4
˜
§
¡
ÿ
(2)
R
-Mor
¥
l
(
f
:
M
1
→
M
2
)
(
g
:
N
1
→
N
2
)
•
R
-Mod
¥
é
f
(
d,s
)
(
M
1
d
/
/
N
1
,M
2
s
/
/
N
2
)
÷
v
X
e
†
ã
M
1
f
d
/
/
N
1
g
M
2
s
/
/
N
2
K
‰
Æ
R
-Mor
´
Û
Ü
k
•
L
«
Grothendieck
‰
Æ
.
½
Â
2
[5]
¡
R
ε
´
á
Ü
S
‰
Æ
,
Ù
¥
,
(2)
R
ε
¥
é
–
´
¤
k
†
R
-
á
Ü
S
,
(3)
R
ε
¥
l
á
Ü
S
(0
→
A
1
→
A
2
→
A
3
→
0)
á
Ü
(0
→
B
1
→
B
2
→
B
3
→
0)
•
†
R
-
˜
‡
n
|
(
f
1
,f
2
,f
3
)
(
A
1
f
1
/
/
B
1
,A
2
f
2
/
/
B
2
,A
3
f
3
/
/
B
3
)
÷
v
X
e
†
ã
0
/
/
A
1
/
/
f
1
A
2
/
/
f
2
A
3
/
/
f
3
0
0
/
/
B
1
/
/
B
2
/
/
B
3
/
/
0
C
´
˜
‡
†
R
-
a
.
P
c
C
=
{
0
→
X
→
Y
→
Z
→
0
∈
R
ε
:
X
∈C}
½
Â
3
[6]
A
´
?
¿
‰
Æ
,
C
´
A
˜
‡
é
–
a
.
(1)
¡
A
¥
φ
:
M
→
N
´
M
C
-
ý
•
ä
,
X
J
N
∈C
¿
…
é
?
¿
f
:
M
→
N
0
,
Ù
¥
N
0
∈C
,
•
3
g
:
N
→
N
0
¦
gφ
=
f
.
¡
C
-
ý
•
ä
φ
:
M
→
N
´
M
C
-
•
ä
,
X
J
÷
v
ηφ
=
φ
g
Ó
η
´
g
Ó
.
(2)
¡
A
¥
ψ
:
M
→
N
´
N
C
-
ý
CX
,
X
J
M
∈C
¿
…
é
?
¿
f
:
M
0
→
N
,
Ù
¥
M
0
∈C
,
•
3
h
:
M
0
→
M
¦
ψh
=
f
.
¡
C
-
ý
CX
ψ
:
M
→
N
´
N
C
-
CX
,
X
J
÷
v
ψβ
=
ψ
g
Ó
β
´
g
Ó
.
½
Â
4
[4]
¡
I
´
R
-Mod
n
Ž
,
X
J
é
?
¿
†
R
-
M
Ú
N
,
M
N
3
I
¥
¤
k
´
Hom
R
(
M,N
)
f
+
,
¿
…
÷
v
é
?
¿
†
R
-
Ó
f
,
g
Ú
h
,
e
fgh
k
¿Â
…
g
∈I
,
K
fgh
∈I
.
DOI:10.12677/pm.2023.1351531510
n
Ø
ê
Æ
4
˜
§
¡
ÿ
½
Â
5
[7]
C
´
˜
‡
†
R
-Mod
a
,
I
c
=
{
f
∈
Hom
R
(
M,N
)
|
M
´
?
¿
†
R
,
N
∈C}
,
c
I
=
{
g
∈
Hom
R
(
M,N
)
|
N
´
?
¿
†
R
,M
∈C}
.
K
I
c
´
d
{
1
N
:
N
∈C}
)
¤
R
-
m
n
Ž
,
c
I
´
d
{
1
M
:
M
∈C}
)
¤
R
-
†
n
Ž
.
½
Â
6
[3]
¡
c
I
¥
φ
:
M
→
N
´
M
c
I
-
ý
•
ä
,
X
J
é
c
I
¥
?
¿
ϕ
:
M
→
D
,
•
3
η
:
N
→
D
,
¦
ηφ
=
ϕ
.
¡
c
I
-
ý
•
ä
φ
:
M
→
N
´
c
I
-
•
ä
,
X
J
÷
v
hφ
=
φ
g
Ó
h
´
g
Ó
.
½
Â
7
[3]
¡
I
c
¥
φ
:
M
→
N
´
N
I
c
-
ý
CX
,
X
J
é
I
c
¥
?
¿
ψ
:
C
→
N
,
•
3
θ
:
C
→
M
,
¦
φθ
=
ψ
.
¡
I
c
-
ý
CX
φ
:
M
→
N
´
I
c
-
CX
,
X
J
÷
v
φγ
=
φ
g
Ó
γ
´
g
Ó
.
3.
Ì
‡
(
J
·
‚
Ä
k
‰
Ñ
X
e
˜
‡
k^
Ú
n
.
Ú
n
1
[4](1)
I
´
R
-Mod
¥
'
u
†
Ú
µ
4
˜
‡
m
n
Ž
.
K
I
¥
(
ϕ
i
:
M
i
→
N
i
)
i
∈
J
´
M
i
˜
‡
I
-
ý
•
ä
…
=
⊕
i
∈
J
ϕ
i
:
⊕
i
∈
I
M
i
→⊕
i
∈
J
N
i
´
⊕
i
∈
J
M
i
˜
‡
I
-
ý
•
ä
.
(2)
I
´
R
-Mod
¥
'
u
†
È
µ
4
˜
‡
†
n
Ž
.
K
I
¥
(
ϕ
i
:
M
i
→
N
i
)
i
∈
J
´
N
i
˜
‡
I
-
ý
CX
…
=
Π
i
∈
J
ϕ
i
:Π
i
∈
I
M
i
→
Π
i
∈
J
N
i
´
Π
i
∈
J
N
i
˜
‡
I
-
ý
CX
.
±
e
½
n
´
©
Ì
‡
(
Ø
.
½
n
1
C
´
˜
‡
†
R
-
a
,
e
ã
´
(
f,d
)
í
Ñ
:
A
1
d
f
/
/
B
1
s
A
2
g
/
/
B
2
K
d
:
A
1
→
A
2
´
A
1
˜
‡
C
-
ý
•
ä
…
=
(
A
1
f
/
/
B
1
)
(
d,s
)
/
/
(
A
2
g
/
/
B
2
)
´
f
:
A
1
→
B
1
˜
‡
c
I
-
ý
•
ä
.
y
²
:
¿
©
5
:
?
R
-Mod
¥
é
(
A
1
f
/
/
B
1
)
(
ω,γ
)
/
/
(
X
α
/
/
Y
) ,
Ù
¥
X
∈C
.
Ï
•
d
:
A
1
→
A
2
´
A
1
˜
‡
C
-
ý
•
ä
,
A
2
∈C
,
¤
±
•
3
ξ
:
A
2
→
X
,
¦
ξd
=
ω
,
l
k
γf
=
αω
=
αξd
,
¤
±
d
í
Ñ
5
Ÿ•
,
•
3
β
:
B
2
→
Y
,
¦
βg
=
αξ
,
βs
=
γ
.
Ï
d
DOI:10.12677/pm.2023.1351531511
n
Ø
ê
Æ
4
˜
§
¡
ÿ
(
ξ,β
)(
d,s
) = (
ω,γ
),
=
k
e
†
ã
:
A
1
f
/
/
d
ω
B
1
s
γ
A
2
g
/
/
ξ
!
!
B
2
β
X
α
/
/
Y
(
A
1
f
/
/
B
1
)
(
d,s
)
/
/
(
A
2
g
/
/
B
2
)
´
˜
‡
c
I
-
ý
•
ä
.
7
‡
5
:
d
K
¿
Œ
,
A
2
∈C
,
y
X
∈C
,
ω
:
A
1
→
X
´
?
¿
†
R
-
,
K
(
A
1
f
/
/
B
1
)
(
α,
0)
/
/
(
X
0
/
/
0)
•
R
-Mod
¥
é
,
…
X
0
/
/
0
∈
c
I
.
Ï
•
(
A
1
f
i
/
/
B
1
)
(
d,s
)
/
/
(
A
2
g
/
/
B
2
)
´
˜
‡
c
I
-
ý
•
ä
,
¤
±
•
3
é
(
A
2
g
/
/
B
2
)
(
ξ,
0)
/
/
(
X
0
/
/
0) ,
¦
e
ã
†
:
A
1
f
/
/
d
ω
B
1
s
0
A
2
g
/
/
ξ
!
!
B
2
0
X
0
/
/
0
=
(
ξ,
0)(
d,s
) = (
ω,
0),
Ï
d
ξd
=
ω
,
¤
±
d
:
A
1
→
A
2
´
A
1
˜
‡
C
-
ý
•
ä
.
í
Ø
1
-
C
´
'
u
†
Ú
µ
4
˜
‡
†
R
-Mod
a
,
…
é
?
¿
i
∈I
,
e
ã
´
(
f
i
,d
i
)
í
Ñ
:
A
i
d
i
f
i
/
/
B
i
s
i
A
0
i
g
i
/
/
B
0
i
X
J
⊕
i
∈
J
B
0
i
´
⊕
i
∈
J
f
i
†
⊕
i
∈
J
d
i
í
Ñ
,
@
o
(
A
i
f
i
/
/
B
i
)
(
d
i
,s
i
)
/
/
(
A
0
i
g
i
/
/
B
0
i
)
´
f
i
:
A
i
→
B
i
˜
‡
c
I
-
ý
•
ä
…
=
(
⊕
i
∈
J
A
i
→⊕
i
∈
J
B
i
)
(
⊕
i
∈
J
d
i
,
⊕
i
∈
J
s
i
)
/
/
(
⊕
i
∈
J
A
0
i
→⊕
i
∈
J
B
0
i
)
´
⊕
i
∈
J
f
i
:
⊕
i
∈
I
A
i
→⊕
i
∈
J
B
i
˜
‡
c
I
-
ý
•
ä
.
DOI:10.12677/pm.2023.1351531512
n
Ø
ê
Æ
4
˜
§
¡
ÿ
y
²
:
¿
©
5
:(
A
i
f
i
/
/
B
i
)
(
d
i
,s
i
)
/
/
(
A
0
i
g
i
/
/
B
0
i
)
´
f
i
:
A
i
→
B
i
˜
‡
c
I
-
ý
•
ä
,
d
½
n
1
7
‡
5
Œ
•
,
d
i
:
A
i
→
A
0
i
´
A
i
˜
‡
C
-
ý
•
ä
.
K
d
Ú
n
1
9
C
'
u
†
Ú
µ
4
Œ
•
,
⊕
i
∈
J
d
i
:
⊕
i
∈
J
A
i
→⊕
i
∈
J
A
0
i
´
⊕
i
∈
J
A
i
˜
‡
C
-
ý
•
ä
.
Ï
•
⊕
i
∈
J
B
0
i
´
(
⊕
i
∈
J
f
i
,
⊕
i
∈
J
d
i
)
í
Ñ
.
¤
±
(
⊕
i
∈
J
A
i
→⊕
i
∈
J
B
i
)
(
⊕
i
∈
J
d
i
,
⊕
i
∈
J
s
i
)
/
/
(
⊕
i
∈
J
A
0
i
→⊕
i
∈
J
B
0
i
)
´
⊕
i
∈
J
f
i
:
⊕
i
∈
I
A
i
→⊕
i
∈
J
B
i
˜
‡
c
I
-
ý
•
ä
.
7
‡
5
:(
⊕
i
∈
J
A
i
→⊕
i
∈
J
B
i
)
(
⊕
i
∈
J
d
i
,
⊕
i
∈
J
s
i
)
/
/
(
⊕
i
∈
J
A
0
i
→⊕
i
∈
J
B
0
i
)
´
⊕
i
∈
J
f
i
:
⊕
i
∈
I
A
i
→⊕
i
∈
J
B
i
˜
‡
c
I
-
ý
•
ä
.
d
½
n
1
7
‡
5
Œ
•
,
⊕
i
∈
J
d
i
:
⊕
i
∈
J
A
i
→⊕
i
∈
J
A
0
i
´
⊕
i
∈
J
A
i
˜
‡
C
-
ý
•
ä
.
K
d
Ú
n
1
Œ
•
,
d
i
:
A
i
→
A
0
i
´
A
i
˜
‡
C
-
ý
•
ä
,
Ï
•
B
0
i
•
(
f
i
,d
i
)
í
Ñ
,
¤
±
(
A
i
f
i
/
/
B
i
)
(
d
i
,s
i
)
/
/
(
A
0
i
g
i
/
/
B
0
i
)
´
˜
‡
c
I
-
ý
•
ä
.
·
K
1
C
´
˜
‡
†
R
-
a
,
e
ã
´
(
f,α
)
í
Ñ
:
A
1
α
f
/
/
B
1
β
A
2
g
/
/
B
2
K
α
:
A
1
→
A
2
´
A
1
˜
‡
C
-
ý
•
ä
…
=
(0
→
A
1
→
B
1
→
C
→
0)
(
α,β,
1)
/
/
(0
→
A
2
→
B
2
→
C
→
0)
´
Ü
0
/
/
A
1
f
/
/
B
1
g
/
/
C
/
/
0
3
R
ε
¥
˜
‡
c
C
-
ý
•
ä
.
y
²
:
¿
©
5
d
([5],
½
n
2.1)
Œ
.
7
‡
5
:
X
∈C
,
δ
:
A
1
→
X
´
?
¿
†
R
-
,
(0
→
A
1
→
B
1
→
C
→
0)
(
δ,
0
,
0)
/
/
(0
→
X
→
0
→
0
→
0)
•
R
ε
¥
n
|
,
Ï
•
(0
→
A
1
→
B
1
→
C
→
0)
(
α,β,
1)
/
/
(0
→
A
2
→
B
2
→
C
→
0)
´
Ü
0
/
/
A
1
f
/
/
B
1
g
/
/
C
/
/
0
˜
‡
c
C
-
ý
•
ä
,
¤
±
•
3
R
ε
¥
n
|
(0
→
A
2
→
B
2
→
C
→
0)
(
h,
0
,
0)
/
/
(0
→
X
→
0
→
0
→
0)
¦
(
h,
0
,
0)(
α,β,
1) = (
δ,
0
,
0),
Ï
d
hα
=
δ
,
¤
±
d
:
A
1
→
A
2
´
A
1
˜
‡
C
-
ý
•
ä
.
DOI:10.12677/pm.2023.1351531513
n
Ø
ê
Æ
4
˜
§
¡
ÿ
í
Ø
2
-
C
´
'
u
†
Ú
µ
4
˜
‡
†
R
-Mod
a
,
…
é
?
¿
i
∈I
,
e
ã
´
(
f
i
,α
i
)
í
Ñ
:
A
i
α
i
f
i
/
/
B
i
β
i
A
0
i
g
i
/
/
B
0
i
X
J
⊕
i
∈
J
B
0
i
´
⊕
i
∈
J
f
i
†
⊕
i
∈
J
d
i
í
Ñ
,
@
o
(0
→
A
i
→
B
i
→
C
i
→
0)
(
α
i
,β
i
,
1)
/
/
(0
→
A
0
i
→
B
0
i
→
C
i
→
0)
´
Ü
0
/
/
A
i
f
i
/
/
B
i
g
i
/
/
C
i
/
/
0
3
R
ε
¥
˜
‡
c
C
-
ý
•
ä
…
=
(0
→⊕
i
∈
J
A
i
→⊕
i
∈
J
B
i
→⊕
i
∈
J
C
i
→
0)
(
⊕
i
∈
J
α
i
,
⊕
i
∈
J
β
i
,
1)
/
/
(0
→⊕
i
∈
J
A
0
i
→⊕
i
∈
J
B
0
i
→⊕
i
∈
J
C
i
→
0)
´
Ü
0
→⊕
i
∈
J
A
i
→⊕
i
∈
J
B
i
→⊕
i
∈
J
C
i
→
0
3
R
ε
¥
˜
‡
c
C
-
ý
•
ä
.
y
²
:
¿
©
5
:(0
→
A
i
→
B
i
→
C
i
→
0)
(
α
i
,β
i
,
1)
/
/
(0
→
A
0
i
→
B
0
i
→
C
i
→
0)
´
Ü
0
/
/
A
i
f
i
/
/
B
i
g
i
/
/
C
i
/
/
0
˜
‡
c
C
-
ý
•
ä
,
d
·
K
1
7
‡
5
Œ
•
,
α
i
:
A
i
→
A
0
i
´
A
i
˜
‡
C
-
ý
•
ä
,
d
Ú
n
1
9
C
'
u
†
Ú
µ
4
Œ
•
,
⊕
i
∈
J
α
i
:
⊕
i
∈
J
A
i
→⊕
i
∈
J
A
0
i
´
⊕
i
∈
J
A
i
˜
‡
C
-
ý
•
ä
.
Ï
•
⊕
i
∈
J
B
0
i
´
(
⊕
i
∈
J
f
i
,
⊕
i
∈
J
α
i
)
í
Ñ
,
¤
±
(0
→⊕
i
∈
J
A
i
→⊕
i
∈
J
B
i
→⊕
i
∈
J
C
i
→
0)
(
⊕
i
∈
J
α
i
,
⊕
i
∈
J
β
i
,
1)
/
/
(0
→⊕
i
∈
J
A
0
i
→
B
→⊕
i
∈
J
C
i
→
0)
´
˜
‡
c
C
-
ý
•
ä
.
7
‡
5
:
Ï
•
(0
→⊕
i
∈
J
A
i
→⊕
i
∈
J
B
i
→⊕
i
∈
J
C
i
→
0)
(
⊕
i
∈
J
α
i
,
⊕
i
∈
J
β
i
,
1)
/
/
(0
→⊕
i
∈
J
A
0
i
→⊕
i
∈
J
B
0
i
→⊕
i
∈
J
C
i
→
0)
´
Ü
0
→⊕
i
∈
J
A
i
→⊕
i
∈
J
B
i
→⊕
i
∈
J
C
i
→
0
˜
‡
c
C
-
ý
•
ä
,
¤
±
d
·
K
1
7
‡
5
Œ
•
,
⊕
i
∈
J
α
i
:
⊕
i
∈
J
A
i
→⊕
i
∈
J
A
0
i
´
⊕
i
∈
J
A
i
˜
‡
C
-
ý
•
ä
.
K
d
Ú
n
1
Œ
•
,
α
i
:
A
i
→
A
0
i
´
A
i
˜
‡
C
-
ý
•
ä
,
Ï
•
B
0
i
•
(
f
i
,α
i
)
í
Ñ
,
¤
±
(0
→
A
i
→
B
i
→
C
i
→
0)
(
α
i
,β
i
,
1)
/
/
(0
→
A
0
i
→
B
0
i
→
C
i
→
0)
´
˜
‡
c
C
-
ý
•
ä
.
ë
•
©
z
[1]Enochs,E.E.(1981)InjectiveandFlatCovers,EnvelopesandResolents.
IsraelJournalof
Mathematics
,
39
,189-209.https://doi.org/10.1007/BF02760849
DOI:10.12677/pm.2023.1351531514
n
Ø
ê
Æ
4
˜
§
¡
ÿ
[2]Auslander,M.andSmalø,S.(1980)PreprojectiveModulesoverArtinAlgebras.
Journalof
Algebra
,
66
,61-122.https://doi.org/10.1016/0021-8693(80)90113-1
[3]Fu, X.H., GuilAsensio,P.A., Herzog,I. andTorrecillas,B. (2013)IdealApproximationTheory.
AdvancesinMathematics
,
244
,750-790.https://doi.org/10.1016/j.aim.2013.05.020
[4]Mao,L.X.(2018) OnPreenvelopesandPrecovers by IdealsofMorphisms ofModules.
Journal
ofPureandAppliedAlgebra
,
222
,4004-4019.https://doi.org/10.1016/j.jpaa.2018.02.017
[5]Mao, L.X. (2020)On Envelopes and Covers in the Categoryof ShortExact Sequences.
Bulletin
oftheMalaysianMathematicalSciencesSociety
,
43
,3457-3480.
https://doi.org/10.1007/s40840-019-00878-7
[6]Mao,L.X.(2016)PrecoversandPreenvelopesbyPhantomandExt-PhantomMorphisms.
CommunicationsinAlgebra
,
44
,1704-1721.https://doi.org/10.1080/00927872.2015.1027388
[7]Mao,L.X.(2018)HigherPhantomandExt-PhantomMorphisms.
JournalofAlgebraandIts
Applications
,
17
,Article1850012.https://doi.org/10.1142/S0219498818500123
DOI:10.12677/pm.2023.1351531515
n
Ø
ê
Æ