设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(5),1528-1547
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135155
'
u
˜
a
A
Ï
3
×
3
¬
Q
:
X
Ú
)
(
•
Ø
©
Û
000
WWW
ååå
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2023
c
4
23
F
¶
¹
^
F
Ï
µ
2023
c
5
24
F
¶
u
Ù
F
Ï
µ
2023
c
5
31
F
Á
‡
C
c
5
§
˜
a
A
Ï
3
×
3
¬
Q
:
X
Ú
2
•
A^u
˜
Ô
n
¯
K
¥
"
•
B
u
ÿ
Á¢
S
ê
Š
Ž
{
-
½
5
§
©
é
ù
«
a
.
3
×
3
¬
Q
:
X
Ú
?
1
(
•
Ø
©
Û
§
¿
‰
Ñ
(
•
Ø
Œ
O
Ž
ä
N
ú
ª
"
Ä
u
(
•
Ø
§
·
‚
?
1
ê
Š
¢
"
ê
Š
¢
(
J
L
²
T
L
ˆ
ª
Œ
^u
u
¢
S
Ž
{
-
½
5
"
'
…
c
3
×
3
¬
Q
:
¯
K
§
•
Ø
§
(
•
Ø
StructuredBackwardErrorAnalysison
aSpecialClassofBlockThree-by-Three
SaddlePointSystems
JialuXing
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.23
rd
,2023;accepted:May24
th
,2023;published:May31
st
,2023
©
Ù
Ú
^
:
0
W
å
.
'
u
˜
a
A
Ï
3
×
3
¬
Q
:
X
Ú
)
(
•
Ø
©
Û
[J].
n
Ø
ê
Æ
,2023,13(5):1528-1547.
DOI:10.12677/pm.2023.135155
0
W
å
Abstract
Inrecentyears,aspecialclassofblockthree-by-threesaddlepointsystemsiswidely
appliedtoanumberofphysicalproblems.Inordertoevaluatethestabilityofactual
numericalalgorithms,thispaperperformsthestructuredbackwarderroranalysis
forthistypeofblockthree-by-threesaddlepointsystemandpresentsanexplicit
andcomputableformulaforthestructuredbackwarderror.Basedonthestructured
backwarderror,weperformnumericalexp eriment.Numericalexampleshowsthat
theexpressionsareusefulfortestingthestabilityofpracticalalgorithms.
Keywords
Block
3
×
3
SaddlePointProblem,BackwardError,StructuredBackwardError
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
©
ï
Ä
±
e
3
×
3
¬
Q
:
¯
K
(
•
Ø
AB
T
0
B
−
EC
T
0
CD
x
y
z
=
f
g
h
,
(1.1)
Ù
¥
A
∈
R
n
×
n
Ú
D
∈
R
p
×
p
´
é
¡
½
Ý
,
E
∈
R
m
×
m
´
é
¡
Œ
½
Ý
,
B
∈
R
m
×
n
Ú
C
∈
R
p
×
m
´
Ý
/
Ý
.
B
T
“
L
B
=
˜
,
C
T
“
L
C
=
˜
.
é
A,B,C,D,E
å
y
‚
5
X
Ú
(1.1)
)
•
3
•
˜
5
.
‰
½
,
‡
(
¯
K
C
q
)
,
(
•
Ø
©
Û
•
)
3
ê
â
¥
Ï
é
˜
‡
•
(
6
Ä
,
¦
C
q
)
´
(
6
Ä
¯
K
°
(
)
,
•
(
6
Ä
Œ
¡
•
(
•
Ø
.
(
•
Ø
©
Û
Œ
±
£
‰
¢
S
)û
¯
K
†
·
‚
Ž
‡
)û
¯
K
k
õ
C
,
¿
«ê
Š
Ž
{
-
½
5
[1,2].
‚
5
X
Ú
(1.1)
)
u
¯
õ
‰
Æ
O
Ž
+
•
¥
,
'
X
Í
Ü
/
¢
-
ñ
ó
Ä
å
Æ
•
Z
ý
N
!
ì
m
u
[3],
\
„
Í
Ü
š
Y
å
Æ
•
§
n
|
S
“
¦
)
¬
ý
N
!
ì
m
u
[4],
-
½
Í
Ü
š
Y
å
Æ
·
Ü
¬
¬
n
/
ý
N
!
ì
m
u
[5]
.
DOI:10.12677/pm.2023.1351551529
n
Ø
ê
Æ
0
W
å
3
×
3
¬
Q
:
X
Ú
(1.1)
Œ
±
T
/
©
•
2
Â
Q
:
¯
K
,
=
:
AB
T
0
B
−
EC
T
0
CD
x
y
z
=
f
g
h
½
AB
T
0
B
−
EC
T
0
CD
x
y
z
=
f
g
h
.
C
c
5
,
˜
Æ
ö
[6–10]
®
²
é
2
Â
Q
:
X
Ú
?
1
(
•
Ø
©
Û
,
y
²
ƒ
A
ê
Š
Ž
{
ä
k
r
-
½
5
.
¦
+
3
×
3
¬
Q
:
X
Ú
(1.1)
Œ
±
@
•
´
2
Â
(2
×
2
¬
)
Q
:
¯
K
,
Ï
•
§
ä
k
A
Ï
3
×
3
¬
(
,
þ
ã
(
•
Ø
©
Û
¿Ø
U
O
(
/
L
«
X
Ú
(1.1).
3
©
¥
,
·
‚
ò
é
3
×
3
¬
Q
:
X
Ú
(1.1)
?
1
(
•
Ø
©
Û
.
•
{
B
,
r
(1.1)
P
Š
A
t
=
d.
é
?
¿
O
Ž
)
˜
t
=
˜
x
T
,
˜
y
T
,
˜
z
T
T
,
½
Â
Ù
Ã
(
•
Ø
η
(
˜
t
)
•
η
(
˜
t
) =min
∆
A
,
∆
d
k
∆
Ak
F
kAk
F
,
k
∆
d
k
2
k
d
k
2
2
: (
A
+∆
A
)
˜
t
=
d
+∆
d
,
þ
¡
ª
f
Œ
±
?
˜
ÚL
«
•
[11]
η
(
˜
t
) =
k
d
−A
˜
t
k
2
q
kAk
2
F
k
˜
t
k
2
2
+
k
d
k
2
2
,
(1.2)
Ù
¥
k·k
F
Ú
k·k
2
©
OL
«
Ý
Frobenius
‰
ê
Ú
2-
‰
ê
.
e
η
(
˜
t
)
´
Å
ì
°
Ý
Ó
þ
?
,
K
O
Ž
)
˜
t
O
Ž
L
§
´
•
-
½
§
=
˜
t
´
˜
‡
•
-
½
)
.
I
‡
5
¿
´
,
X
J
X
ê
Ý
A
ä
k
,
«
A
Ï
(
,
g
,
‡
¦
A
+∆
A
•
ä
k†
A
ƒ
Ó
(
.
3ù
«
œ
¹
e
,
g
,
‡
•
Ä
(
•
Ø
.
©
(
S
ü
X
e
µ
3
1
2
!
¥
,
Ì
‡
0
Kronecker
È
§
Ú
¡
y
²
¥
I
‡
^
A
‡
'
…
Ú
n
.
3
1
3
!
¥
,
í
3
×
3
¬
Q
:
X
Ú
(1.1) (
Ý
C
Ø
6
Ä
)
(
•
Ø
ä
N
Œ
O
Ž
L
ˆ
ª
.
3
1
4
!
¥
,
í
3
×
3
¬
Q
:
X
Ú
(1.1) ((
i
)˜
y
= 0
,
(
ii
)˜
x
= 0
,
(
iii
)˜
z
= 0)
(
•
Ø
ä
N
Œ
O
Ž
L
ˆ
ª
.
3
1
5
!
¥
,
Ï
L
ê
Š
¢
5
y
²
í
Ñ
L
ˆ
ª
é
u
ÿ
Á
¦
)
3
×
3
¬
Q
:
X
Ú
¢
S
ê
Š
Ž
{
-
½
5
´
k^
.
3
1
6
!
¥
,
é
©
ó
Š
?
1
o
(
.
2.
ý
•
£
©
^
R
m
×
n
Ú
SR
n
×
n
©
OL
«
m
×
n
¢
Ý
8
ÜÚ
n
×
n
¢
é
¡
Ý
8
Ü
,
^
A
†
L
«
Ý
A
Moore-Penrose
_
,
X
= (
x
ij
)
∈
R
m
×
n
,
Z
∈
R
p
×
q
.
X
Ú
Z
ƒ
m
Kronecker
È
½
DOI:10.12677/pm.2023.1351551530
n
Ø
ê
Æ
0
W
å
Â
•
(
„
©
z
[12],
1
4
Ù
])
X
⊗
Z
= (
x
ij
Z
)
∈
R
mp
×
nq
.
d
©
z
[12]
•
vec(
XYZ
) =
Z
T
⊗
X
vec(
Y
),
(2.1)
(
X
⊗
Z
)
T
=
X
T
⊗
Z
T
,
(2.2)
(
X
⊗
Z
)(
C
⊗
G
) = (
XC
⊗
ZG
),(2.3)
Ù
¥
Y
∈
R
n
×
p
,
C
Ú
G
•
Ü
·
ê
Ý
,vec(
Y
)
½
Â
•
ò
Ý
Y
¤
k
•
g
æU
¤
˜
‡
•
þ
•
þ
.
3
!
¥
,
·
‚
ò
0
˜
Ú
n
,
ù
Ú
n
ò
3
e
5
Ù
!
¥
¦
^
.
Ú
n
2.1
([8,13])
u
∈
R
m
Ú
p
∈
R
n
®
•
.
½
Â
X
=
X
∈
R
n
×
m
:
Xu
=
p
.
K
,
X6
=
∅
…
=
pu
†
u
=
p
,
…
3
d
œ
¹
e
,
?
¿
X
∈X
Œ
L
«
•
X
=
pu
†
+
Z
I
m
−
uu
†
,Z
∈
R
n
×
m
.
Ú
n
2.2
([8,13])
b,c
∈
R
n
®
•
.
½
Â
H
=
H
∈
SR
n
×
n
:
Hb
=
c
.
K
,
H6
=
∅
…
=
b
Ú
c
÷
v
cb
†
b
=
c
,
…
3
d
^
‡
e
,
?
¿
H
∈H
Œ
L
«
•
H
=
cb
†
+
b
†
T
c
T
I
n
−
bb
†
+
I
n
−
bb
†
T
I
n
−
bb
†
,
Ù
¥
T
∈
SR
n
×
n
.
3.
¦
)
X
Ú
(1.1)(
Ý
C
Ø
6
Ä
)
(
•
Ø
¯
K
-
˜
t
=
˜
x
T
,
˜
y
T
,
˜
z
T
T
´
X
Ú
(1.1)
O
Ž
)
,
½
Â
(
•
Ø
η
S
(˜
x,
˜
y,
˜
z
)
•
η
S
(˜
x,
˜
y,
˜
z
) =min
∆
A,
∆
B,
∆
E,
∆
D,
∆
f,
∆
g,
∆
h
∈F
k
∆
A
k
F
k
A
k
F
k
∆
B
k
F
k
B
k
F
k
∆
E
k
F
k
E
k
F
k
∆
D
k
F
k
D
k
F
k
∆
f
k
2
k
f
k
2
k
∆
g
k
2
k
g
k
2
k
∆
h
k
2
k
h
k
2
00
F
,
DOI:10.12677/pm.2023.1351551531
n
Ø
ê
Æ
0
W
å
Ù
¥
F
=
∆
A,
∆
B,
∆
E,
∆
D,
∆
f,
∆
g,
∆
h
:
A
+∆
A
(
B
+∆
B
)
T
0
B
+∆
B
−
(
E
+∆
E
)
C
T
0
CD
+∆
D
˜
x
˜
y
˜
z
=
f
+∆
f
g
+∆
g
h
+∆
h
,
∆
A
= ∆
A
T
,
∆
D
= ∆
D
T
,
∆
E
= ∆
E
T
.
(3.1)
e
O
Ž
)
˜
t
(
•
Ø
´
Å
ì
°
Ý
Ó
þ
?
,
K
O
Ž
)
˜
t
´
˜
‡
(
•
-
½
)
,
ƒ
A
ê
Š
Ž
{
´
(
•
-
½
(
½
r
-
½
[14] ).
Ï
d
,
‰
Ñ
(
•
Ø
η
S
(˜
x,
˜
y,
˜
z
)
Œ
O
Ž
ä
N
L
ˆ
ª
ò
k
Ï
u
ÿ
Á¢
S
ê
Š
Ž
{
-
½
5
.
•
d
,
?
˜
Ú
½
Â
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
•
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
=min
∆
A,
∆
B,
∆
E,
∆
D,
∆
f,
∆
g,
∆
h
∈F
θ
1
k
∆
A
k
F
θ
2
k
∆
B
k
F
θ
3
k
∆
E
k
F
θ
4
k
∆
D
k
F
λ
1
k
∆
f
k
2
λ
2
k
∆
g
k
2
λ
3
k
∆
h
k
2
00
F
,
(3.2)
Ù
¥
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
Ú
λ
3
•
ë
ê
.
e
A
6
=0
,B
6
= 0
,E
6
= 0
,D
6
= 0
,f
6
= 0
,g
6
= 0
Ú
h
6
= 0,
K
˜
θ
1
=
1
k
A
k
F
,
˜
θ
2
=
1
k
B
k
F
,
˜
θ
3
=
1
k
E
k
F
,
˜
θ
4
=
1
k
D
k
F
,
˜
λ
1
=
1
k
f
k
2
,
˜
λ
2
=
1
k
g
k
2
,
and
˜
λ
3
=
1
k
h
k
2
,
l
k
η
S
(˜
x,
˜
y,
˜
z
) =
η
(
˜
θ
1
,
˜
θ
2
,
˜
θ
3
,
˜
θ
4
,
˜
λ
1
,
˜
λ
2
,
˜
λ
3
)
(˜
x,
˜
y,
˜
z
)
.
(3.3)
•
‰
Ñ
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
(
•
Ø
²
(
L
ˆ
ª
.
·
‚
Ä
k
ï
Ä
Ü
©
(
•
Ø
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
),
Ù
½
Â
•
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
) =min
(∆
A,
∆
B,
∆
E,
∆
D
)
∈F
0
"
θ
1
k
∆
A
k
F
θ
2
k
∆
B
k
F
θ
3
k
∆
E
k
F
θ
4
k
∆
D
k
F
#
F
,
(3.4)
Ù
¥
F
0
=
∆
A,
∆
B,
∆
E,
∆
D
!
:
A
+∆
A
(
B
+∆
B
)
T
0
B
+∆
B
−
(
E
+∆
E
)
C
T
0
CD
+∆
D
˜
x
˜
y
˜
z
=
f
g
h
,
∆
A
= ∆
A
T
,
∆
D
= ∆
D
T
,
∆
E
= ∆
E
T
.
(3.5)
e
¡
‰
Ñ
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
²
(
L
ˆ
ª
.
½
n
3.1
b
(˜
x
T
,
˜
y
T
,
˜
z
T
)
T
÷
v
˜
x
6
= 0
,
˜
y
6
= 0
Ú
˜
z
6
= 0
•
X
Ú
(1.1)
˜
‡
O
Ž
)
.
K
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
2
=
2
θ
2
1
θ
2
2
γ
1
k
r
f
k
2
2
+
2
θ
2
2
θ
2
3
γ
2
k
r
g
k
2
2
+
2
θ
2
4
k
˜
z
k
2
2
k
r
h
k
2
2
+
θ
2
1
γ
4
γ
1
γ
3
r
T
f
˜
x
2
+
θ
2
3
γ
5
γ
2
γ
3
r
T
g
˜
y
2
−
θ
2
4
k
˜
z
k
4
2
r
T
h
˜
z
2
+
2
θ
2
1
θ
2
3
γ
3
r
T
f
˜
x
r
T
g
˜
y
,
(3.6)
DOI:10.12677/pm.2023.1351551532
n
Ø
ê
Æ
0
W
å
Ù
¥
r
f
=
f
−
A
˜
x
−
B
T
˜
y, r
g
=
−
g
+
B
˜
x
−
E
˜
y
+
C
T
˜
z,r
h
=
h
−
C
˜
y
−
D
˜
z,
γ
1
=
θ
2
2
k
˜
x
k
2
2
+2
θ
2
1
k
˜
y
k
2
2
, γ
2
= 2
θ
2
3
k
˜
x
k
2
2
+
θ
2
2
k
˜
y
k
2
2
, γ
3
=
θ
2
3
k
˜
x
k
4
2
+
θ
2
2
k
˜
x
k
2
2
k
˜
y
k
2
2
+
θ
2
1
k
˜
y
k
4
2
,
γ
4
= 2
θ
2
1
θ
2
3
k
˜
y
k
2
2
−
θ
2
2
θ
2
3
k
˜
x
k
2
2
−
θ
4
2
k
˜
y
k
2
2
, γ
5
= 2
θ
2
1
θ
2
3
k
˜
x
k
2
2
−
θ
2
1
θ
2
2
k
˜
y
k
2
2
−
θ
4
2
k
˜
x
k
2
2
.
y
²
d
(3.5)
•
,(∆
A,
∆
B,
∆
E,
∆
D
)
∈F
0
…
=
∆
A,
∆
B,
∆
E
Ú
∆
D
÷
v
∆
A
˜
x
=
r
f
−
∆
B
T
˜
y,
∆
E
˜
y
=
r
g
+∆
B
˜
x,
∆
D
˜
z
=
r
h
,
∆
A
= ∆
A
T
,
∆
D
= ∆
D
T
,
∆
E
= ∆
E
T
.
(3.7)
ò
Ú
n
2
.
2
A^u
(3.7),
Œ
∆
A
=
r
f
−
∆
B
T
˜
y
˜
x
†
+
˜
x
†
T
r
f
−
∆
B
T
˜
y
T
I
n
−
˜
x
˜
x
†
+
I
n
−
˜
x
˜
x
†
T
1
I
n
−
˜
x
˜
x
†
,
(3.8)
Ù
¥
T
1
∈
SR
n
×
n
.
∆
E
= (
r
g
+∆
B
˜
x
)˜
y
†
+
˜
y
†
T
(
r
g
+∆
B
˜
x
)
T
I
m
−
˜
y
˜
y
†
+
I
m
−
˜
y
˜
y
†
T
2
I
m
−
˜
y
˜
y
†
,
(3.9)
Ù
¥
T
2
∈
SR
m
×
m
.
∆
D
=
r
h
˜
z
†
+
˜
z
†
T
r
T
h
I
p
−
˜
z
˜
z
†
+
I
p
−
˜
z
˜
z
†
T
3
I
p
−
˜
z
˜
z
†
,
(3.10)
Ù
¥
T
3
∈
SR
p
×
p
.
é
(3.8),(3.9)
Ú
(3.10)
Ò
ü
>
Ó
ž
Frobenius
‰
ê
,
Œ
k
∆
A
k
2
F
=
r
f
−
∆
B
T
˜
y
2
2
k
˜
x
k
2
2
+
I
n
−
˜
x
˜
x
†
T
1
I
n
−
˜
x
˜
x
†
2
F
+
I
n
−
˜
x
˜
x
†
r
f
−
∆
B
T
˜
y
2
2
k
˜
x
k
2
2
=
2
r
f
−
∆
B
T
˜
y
2
2
k
˜
x
k
2
2
−
r
T
f
˜
x
−
˜
y
T
∆
B
˜
x
2
k
˜
x
k
4
2
+
I
n
−
˜
x
˜
x
†
T
1
I
n
−
˜
x
˜
x
†
2
F
,
(3.11)
k
∆
E
k
2
F
=
k
r
g
+∆
B
˜
x
k
2
2
k
˜
y
k
2
2
+
I
m
−
˜
y
˜
y
†
T
2
I
m
−
˜
y
˜
y
†
2
F
+
I
m
−
˜
y
˜
y
†
(
r
g
+∆
B
˜
x
)
2
2
k
˜
y
k
2
2
=
2
k
r
g
+∆
B
˜
x
k
2
2
k
˜
y
k
2
2
−
r
T
g
˜
y
+˜
y
T
∆
B
˜
x
2
k
˜
y
k
4
2
+
I
m
−
˜
y
˜
y
†
T
2
I
m
−
˜
y
˜
y
†
2
F
,
(3.12)
Ú
k
∆
D
k
2
F
=
k
r
h
k
2
2
k
˜
z
k
2
2
+
I
p
−
˜
z
˜
z
†
T
3
I
p
−
˜
z
˜
z
†
2
F
+
I
p
−
˜
z
˜
z
†
r
h
2
2
k
˜
z
k
2
2
=
2
k
r
h
k
2
2
k
˜
z
k
2
2
−
r
T
h
˜
z
2
k
˜
z
k
4
2
+
I
p
−
˜
z
˜
z
†
T
3
I
p
−
˜
z
˜
z
†
2
F
,
(3.13)
Š
â
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
½
Â
(3.4),
±
9
L
ˆ
ª
(3.11),(3.12)
Ú
(3.13)
Œ
±
Ñ
DOI:10.12677/pm.2023.1351551533
n
Ø
ê
Æ
0
W
å
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
2
=min
∆
B
∈
R
m
×
n
,T
1
∈
SR
n
×
n
T
2
∈
SR
m
×
m
,T
3
∈
SR
p
×
p
n
θ
2
1
k
∆
A
k
2
F
+
θ
2
2
k
∆
B
k
2
F
+
θ
2
3
k
∆
E
k
2
F
+
θ
2
4
k
∆
D
k
2
F
o
=
2
θ
2
4
k
r
h
k
2
2
k
˜
z
k
2
2
−
θ
2
4
r
T
h
˜
z
2
k
˜
z
k
4
2
+min
∆
B
∈
R
m
×
n
p
(∆
B
)
,
(3.14)
Ù
¥
p
(∆
B
) =
2
θ
2
1
r
f
−
∆
B
T
˜
y
2
2
k
˜
x
k
2
2
−
θ
2
1
r
T
f
˜
x
−
˜
y
T
∆
B
˜
x
2
k
˜
x
k
4
2
+
2
θ
2
3
k
r
g
+∆
B
˜
x
k
2
2
k
˜
y
k
2
2
−
θ
2
3
r
T
g
˜
y
+˜
y
T
∆
B
˜
x
2
k
˜
y
k
4
2
+
θ
2
2
k
∆
B
k
2
F
=
2
θ
2
1
k
r
f
k
2
2
k
˜
x
k
2
2
+
2
θ
2
3
k
r
g
k
2
2
k
˜
y
k
2
2
−
θ
2
1
r
T
f
x
2
k
˜
x
k
4
2
−
θ
2
3
r
T
g
˜
y
2
k
˜
y
k
4
2
+
2
θ
2
1
r
T
f
˜
x
˜
y
T
∆
B
˜
x
k
˜
x
k
4
2
−
2
θ
2
3
r
T
g
˜
y
˜
y
T
∆
B
˜
x
k
˜
y
k
4
2
−
(
θ
2
1
k
˜
y
k
4
2
+
θ
2
3
k
˜
x
k
4
2
)
˜
y
T
∆
B
˜
x
2
k
˜
x
k
4
2
k
˜
y
k
4
2
−
4
θ
2
1
˜
y
T
∆
Br
f
k
˜
x
k
2
2
+
4
θ
2
3
r
T
g
∆
B
˜
x
k
˜
y
k
2
2
+
2
θ
2
1
k
˜
y
T
∆
B
k
2
2
k
˜
x
k
2
2
+
2
θ
2
3
k
∆
B
˜
x
k
2
2
k
˜
y
k
2
2
+
θ
2
2
k
∆
B
k
2
F
.
P
t
= vec(∆
B
)
∈
R
nm
,
|
^
Kronecker
È
5
Ÿ
(2.1)
Ú
(2.2),
þ
¡
ª
f
Œ
±
?
˜
Ú
z
•
p
(∆
B
)
=
2
θ
2
1
k
r
f
k
2
2
k
˜
x
k
2
2
+
2
θ
2
3
k
r
g
k
2
2
k
˜
y
k
2
2
−
θ
2
1
r
T
f
x
2
k
˜
x
k
4
2
−
θ
2
3
r
T
g
˜
y
2
k
˜
y
k
4
2
+
θ
2
2
t
T
I
nm
t
+
2
θ
2
1
r
T
f
˜
x
˜
x
T
⊗
˜
y
T
t
k
˜
x
k
4
2
−
2
θ
2
3
r
T
g
˜
y
˜
x
T
⊗
˜
y
T
t
k
˜
y
k
4
2
−
(
θ
2
3
k
˜
x
k
4
2
+
θ
2
1
k
˜
y
k
4
2
)
t
T
(˜
x
⊗
˜
y
)
˜
x
T
⊗
˜
y
T
t
k
˜
x
k
4
2
k
˜
y
k
4
2
−
4
θ
2
1
r
T
f
⊗
˜
y
T
t
k
˜
x
k
2
2
+
2
θ
2
1
t
T
(
I
n
⊗
˜
y
)
I
n
⊗
˜
y
T
t
k
˜
x
k
2
2
+
4
θ
2
3
˜
x
T
⊗
r
T
g
t
k
˜
y
k
2
2
+
2
θ
2
3
t
T
(˜
x
⊗
I
m
)
˜
x
T
⊗
I
m
t
k
˜
y
k
2
2
ò
þ
¡
ª
‘
\
(3.14)
¥
,
¿
-
E
¦
^
(2.2),
Œ
±
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
2
=
2
θ
2
1
k
r
f
k
2
2
k
˜
x
k
2
2
+
2
θ
2
3
k
r
g
k
2
2
k
˜
y
k
2
2
+
2
θ
2
4
k
r
h
k
2
2
k
˜
z
k
2
2
−
θ
2
1
r
T
f
x
2
k
˜
x
k
4
2
−
θ
2
3
r
T
g
˜
y
2
k
˜
y
k
4
2
−
θ
2
4
r
T
h
˜
z
2
k
˜
z
k
4
2
+min
t
∈
R
nm
H
(
t
)
,
ù
p
H
(
t
) =
t
T
Kt
−
2
k
T
t
,
Ù
¥
K
=
θ
2
2
I
nm
+
2
θ
2
1
(
I
n
⊗
˜
y
)
I
n
⊗
˜
y
T
k
˜
x
k
2
2
+
2
θ
2
3
(˜
x
⊗
I
m
)
˜
x
T
⊗
I
m
k
˜
y
k
2
2
−
(
θ
2
1
k
˜
y
k
4
2
+
θ
2
3
k
˜
x
k
4
2
)(˜
x
⊗
˜
y
)
˜
x
T
⊗
˜
y
T
k
˜
x
k
4
2
k
˜
y
k
4
2
,
DOI:10.12677/pm.2023.1351551534
n
Ø
ê
Æ
0
W
å
Ú
k
=
2
θ
2
1
(
r
f
⊗
˜
y
)
k
˜
x
k
2
2
−
2
θ
2
3
(˜
x
⊗
r
g
)
k
˜
y
k
2
2
−
θ
2
1
r
T
f
˜
x
k
˜
x
k
4
2
−
θ
2
3
r
T
g
˜
y
k
˜
y
k
4
2
!
(˜
x
⊗
˜
y
)
,
|
^
(2.3),
¿
5
¿
I
n
−
˜
x
˜
x
†
2
=
I
n
−
˜
x
˜
x
†
,
I
m
−
˜
y
˜
y
†
2
=
I
m
−
˜
y
˜
y
†
Ú
˜
x
†
=˜
x
T
/
k
˜
x
k
2
2
,
˜
y
†
=
˜
y
T
/
k
˜
y
k
2
2
,
Œ
±
Ñ
K
=
θ
2
2
I
nm
+
θ
2
1
(
I
n
⊗
˜
y
)
I
n
⊗
˜
y
T
k
˜
x
k
2
2
+
θ
2
3
(˜
x
⊗
I
m
)
˜
x
T
⊗
I
m
k
˜
y
k
2
2
+
θ
2
1
I
n
−
˜
x
˜
x
†
⊗
˜
y
I
n
−
˜
x
˜
x
†
⊗
˜
y
T
k
˜
x
k
2
2
+
θ
2
3
˜
x
⊗
I
m
−
˜
y
˜
y
†
˜
x
T
⊗
I
m
−
˜
y
˜
y
†
k
˜
y
k
2
2
.
²
w
/
,
K
´
˜
‡
é
¡
½
Ý
.
l
t
=
K
−
1
k
ž
,
H
(
t
)
U
•
Š
.
ƒ
A
,
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
2
=
2
θ
2
1
k
r
f
k
2
2
k
˜
x
k
2
2
+
2
θ
2
3
k
r
g
k
2
2
k
˜
y
k
2
2
+
2
θ
2
4
k
r
h
k
2
2
k
˜
z
k
2
2
−
θ
2
1
r
T
f
x
2
k
˜
x
k
4
2
−
θ
2
3
r
T
g
˜
y
2
k
˜
y
k
4
2
−
θ
2
4
r
T
h
˜
z
2
k
˜
z
k
4
2
−
k
T
K
−
1
k.
(3.15)
õ
g
|
^
Sherman-Morrison-Woodbury
ú
ª
(
„
©
z
[15]),
²
L
˜
Ð
O
Ž
Œ
K
−
1
=
1
θ
2
2
I
nm
−
2
θ
2
1
I
n
⊗
˜
y
˜
y
T
θ
2
2
(
θ
2
2
k
˜
x
k
2
2
+2
θ
2
1
k
˜
y
k
2
2
)
−
2
θ
2
3
˜
x
˜
x
T
⊗
I
m
θ
2
2
(2
θ
2
3
k
˜
x
k
2
2
+
θ
2
2
k
˜
y
k
2
2
)
+
ω
˜
x
˜
x
T
⊗
˜
y
˜
y
T
θ
2
2
(2
θ
2
3
k
˜
x
k
2
2
+
θ
2
2
k
˜
y
k
2
2
)
Ù
¥
ω
=
(
θ
4
2
θ
2
3
+4
θ
2
1
θ
4
3
)
k
˜
x
k
4
2
+8
θ
2
1
θ
2
2
θ
2
3
k
˜
x
k
2
2
k
˜
y
k
2
2
+(4
θ
4
1
θ
2
3
+
θ
2
1
θ
4
2
)
k
˜
y
k
4
2
(
θ
2
2
k
˜
x
k
2
2
+2
θ
2
1
k
˜
y
k
2
2
)(
θ
2
3
k
˜
x
k
4
2
+
θ
2
2
k
˜
x
k
2
2
k
˜
y
k
2
2
+
θ
2
1
k
˜
y
k
4
2
)
.
²
L
˜
„
¡
O
Ž
,
Œ
±
Ñ
k
T
K
−
1
k
=
4
θ
4
1
k
˜
y
k
2
2
k
˜
x
k
2
2
γ
1
k
r
f
k
2
2
+
4
θ
4
3
k
˜
x
k
2
2
k
˜
y
k
2
2
γ
2
k
r
g
k
2
2
−
θ
4
1
k
˜
y
k
2
2
γ
6
k
˜
x
k
4
2
γ
1
γ
3
r
T
f
˜
x
2
−
θ
4
3
k
˜
x
k
2
2
γ
7
k
˜
y
k
4
2
γ
2
γ
3
r
T
g
˜
y
2
−
2
θ
2
1
θ
2
3
γ
3
r
T
f
˜
x
r
T
g
˜
y
,
Ù
¥
γ
6
= 4
θ
2
3
k
˜
x
k
4
2
+3
θ
2
2
k
˜
x
k
2
2
k
˜
y
k
2
2
+2
θ
2
1
k
˜
y
k
4
2
, γ
7
= 2
θ
2
3
k
˜
x
k
4
2
+3
θ
2
2
k
˜
x
k
2
2
k
˜
y
k
2
2
+4
θ
2
1
k
˜
y
k
4
2
.
Ù
¥
γ
1
,γ
2
Ú
γ
3
3
½
n
3.1
c
¡
Ü
©
½
Â
L
,
ò
þ
ª
‘
\
(3.15)
¥
,
í
Ñ
(3.6).
y
²
.
.
e
¡
,
|
^
½
n
3.1
¥
Ü
©
(
•
Ø
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
L
ˆ
ª
í
Ñ
(
•
Ø
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
ä
N
L
ˆ
ª
.
½
n
3.2
b
(˜
x
T
,
˜
y
T
,
˜
z
T
)
T
÷
v
˜
x
6
= 0
,
˜
y
6
= 0
Ú
˜
z
6
= 0
•
X
Ú
(1.1)
˜
‡
O
Ž
)
.
…
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
½
Â
d
(3.1)
Ú
(3.2)
‰
Ñ
.
K
DOI:10.12677/pm.2023.1351551535
n
Ø
ê
Æ
0
W
å
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
2
=
2
θ
2
1
θ
2
2
(
µ
1
−
2
θ
2
1
θ
2
2
)
γ
1
µ
1
k
r
f
k
2
2
+
2
θ
2
2
θ
2
3
(
µ
2
−
2
θ
2
2
θ
2
3
)
γ
2
µ
2
k
r
g
k
2
2
+
2
θ
2
4
(
µ
3
−
2
θ
2
4
)
k
˜
z
k
2
2
µ
3
k
r
h
k
2
2
+
r
T
f
˜
x
2
k
1
+
r
T
g
˜
y
2
k
2
+
r
T
h
˜
z
2
k
3
+
r
T
f
˜
x
r
T
g
˜
y
k
4
,
(3.16)
Ù
¥
µ
1
=
γ
1
λ
2
1
+2
θ
2
1
θ
2
2
, µ
2
=
γ
2
λ
2
2
+2
θ
2
2
θ
2
3
, µ
3
=
k
˜
z
k
2
2
λ
2
3
+2
θ
2
4
, µ
4
=
θ
2
1
k
˜
x
k
2
2
γ
4
+
γ
1
γ
3
λ
2
1
+2
θ
2
1
θ
2
2
γ
3
,
µ
5
=
θ
2
1
θ
2
3
k
˜
x
k
2
2
γ
4
γ
5
+
θ
2
3
γ
1
γ
3
γ
5
λ
2
1
+2
θ
2
1
θ
2
2
θ
2
3
γ
3
γ
5
−
θ
4
1
θ
4
3
k
˜
x
k
2
2
γ
1
γ
2
, µ
6
=
k
˜
z
k
2
2
λ
2
3
+
θ
2
4
,
Ú
Ω
1
=
γ
3
µ
2
µ
4
+
k
˜
y
k
2
2
µ
5
,
Ω
2
=
θ
2
1
θ
4
3
k
˜
y
k
2
2
γ
1
γ
2
γ
3
µ
1
−
γ
3
γ
4
µ
2
µ
4
−k
˜
y
k
2
2
γ
4
µ
5
,
Ú
k
1
=
θ
2
1
γ
4
(
γ
3
µ
1
µ
4
Ω
1
−
4
θ
4
1
θ
2
2
k
˜
x
k
2
2
γ
3
Ω
2
−
θ
2
1
k
˜
x
k
2
2
γ
4
µ
4
Ω
1
−
θ
4
1
k
˜
x
k
4
2
γ
4
Ω
2
)
γ
1
γ
2
3
µ
1
µ
4
Ω
1
−
θ
4
1
θ
4
3
k
˜
y
k
2
2
γ
2
(Ω
1
−k
˜
y
k
2
2
µ
5
−
4
θ
2
1
θ
2
2
γ
2
3
µ
2
)
γ
2
3
µ
2
Ω
1
−
2
θ
4
1
(2
θ
2
2
γ
4
µ
4
Ω
1
+2
θ
2
1
θ
4
2
γ
3
Ω
2
−
θ
2
1
θ
4
3
k
˜
x
k
2
2
k
˜
y
k
2
2
γ
1
γ
2
γ
4
µ
1
µ
4
)
γ
1
γ
3
µ
1
µ
4
Ω
1
,
k
2
=
θ
2
3
γ
5
(
γ
3
µ
2
Ω
1
−
θ
2
3
k
˜
y
k
2
2
γ
5
Ω
1
+4
θ
2
2
θ
2
3
k
˜
y
k
2
2
γ
3
µ
5
+
θ
2
3
k
˜
y
k
4
2
γ
5
µ
5
)
γ
2
γ
2
3
µ
2
Ω
1
−
θ
4
1
θ
4
3
k
˜
x
k
2
2
γ
1
(
µ
4
Ω
1
+
θ
2
1
k
˜
x
k
2
2
Ω
2
−
4
θ
2
2
θ
2
3
γ
2
3
µ
1
µ
4
)
γ
2
3
µ
1
µ
4
Ω
1
−
2
θ
4
3
(2
θ
2
2
γ
5
Ω
1
−
θ
4
1
θ
2
3
k
˜
x
k
2
2
k
˜
y
k
2
2
γ
1
γ
2
γ
5
µ
2
−
2
θ
4
2
γ
3
µ
5
)
γ
2
γ
3
µ
2
Ω
1
,
k
3
=
θ
2
4
(3
θ
2
4
µ
6
−
µ
3
µ
6
−
θ
4
4
)
k
˜
z
k
4
2
µ
3
µ
6
,
k
4
=
2
θ
2
1
θ
2
3
(Ω
1
+
θ
2
1
θ
2
3
k
˜
x
k
2
2
k
˜
y
k
2
2
γ
4
γ
5
+
θ
4
1
θ
4
3
k
˜
x
k
2
2
k
˜
y
k
2
2
γ
1
γ
2
)
γ
3
Ω
1
−
2
θ
4
1
θ
2
3
k
˜
x
k
2
2
(
γ
4
µ
4
Ω
1
+
θ
2
1
k
˜
x
k
2
2
γ
4
Ω
2
+2
θ
2
1
θ
2
2
γ
3
Ω
2
−
2
θ
2
2
θ
2
3
γ
2
3
γ
4
µ
1
µ
4
)
γ
2
3
µ
1
µ
4
Ω
1
−
2
θ
2
1
θ
4
3
k
˜
y
k
2
2
(
γ
5
Ω
1
−
2
θ
2
1
θ
2
2
γ
2
3
γ
5
µ
2
−
2
θ
2
2
γ
3
µ
5
−k
˜
y
k
2
2
γ
5
µ
5
)
γ
2
3
µ
2
Ω
1
−
4
θ
2
1
θ
2
2
θ
2
3
(
θ
2
1
µ
2
Ω
1
−
2
θ
2
1
θ
2
2
θ
2
3
γ
3
µ
1
µ
2
+
θ
2
3
µ
1
Ω
1
)
γ
3
µ
1
µ
2
Ω
1
.
y
²
Š
â
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
½
Â
(3.2)
Ú
Ü
©
(
•
Ø
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
L
ˆ
ª
(3.6),
Œ
±
í
Ñ
DOI:10.12677/pm.2023.1351551536
n
Ø
ê
Æ
0
W
å
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
2
=min
∆
f
∈
R
n
,
∆
g
∈
R
m
,
∆
h
∈
R
p
X
(∆
f,
∆
g,
∆
h
)
,
Ù
¥
X
(∆
f,
∆
g,
∆
h
)
=
λ
2
1
k
∆
f
k
2
2
+
λ
2
2
k
∆
g
k
2
2
+
λ
2
3
k
∆
h
k
2
2
+
2
θ
2
1
θ
2
2
γ
1
k
r
f
+∆
f
k
2
2
+
2
θ
2
2
θ
2
3
γ
2
k
r
g
+∆
g
k
2
2
+
2
θ
2
4
k
˜
z
k
2
2
k
r
h
+∆
h
k
2
2
+
θ
2
1
γ
4
γ
1
γ
3
h
(
r
f
+∆
f
)
T
˜
x
i
2
+
θ
2
3
γ
5
γ
2
γ
3
h
(
r
g
+∆
g
)
T
˜
y
i
2
−
θ
2
4
k
˜
z
k
4
2
h
(
r
h
+∆
h
)
T
˜
z
i
2
+
2
θ
2
1
θ
2
3
γ
3
h
(
r
f
+∆
f
)
T
˜
x
ih
(
r
g
+∆
g
)
T
˜
y
i
.
²
L
˜
Ä
O
Ž
,
Œ
±
Ñ
X
(∆
f,
∆
g,
∆
h
) =
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
2
+
∆
f
∆
g
∆
h
T
Φ
∆
f
∆
g
∆
h
+2
∆
f
∆
g
∆
h
T
q,
…
Φ =
γ
1
λ
2
1
+2
θ
2
1
θ
2
2
γ
1
I
n
+
θ
2
1
γ
4
˜
x
˜
x
T
γ
1
γ
3
θ
2
1
θ
2
3
˜
x
˜
y
T
γ
3
0
θ
2
1
θ
2
3
˜
y
˜
x
T
γ
3
γ
2
λ
2
2
+2
θ
2
2
θ
2
3
γ
2
I
m
+
θ
2
3
γ
5
˜
y
˜
y
T
γ
2
γ
3
0
00
k
˜
z
k
2
2
λ
2
3
+2
θ
2
4
k
˜
z
k
2
2
I
p
−
θ
2
4
˜
z
˜
z
T
k
˜
z
k
4
2
,
Ú
q
=
2
θ
2
1
θ
2
2
γ
1
r
f
+
θ
2
1
γ
4
r
T
f
˜
x
γ
1
γ
3
˜
x
+
θ
2
1
θ
2
3
r
T
g
˜
y
γ
3
˜
x
2
θ
2
2
θ
2
3
γ
2
r
g
+
θ
2
3
γ
5
r
T
g
˜
y
γ
2
γ
3
˜
y
+
θ
2
1
θ
2
3
r
T
f
˜
x
γ
3
˜
y
2
θ
2
4
k
˜
z
k
2
2
r
h
−
θ
2
4
r
T
h
˜
z
k
˜
z
k
4
2
˜
z
.
Ï
L
„
¡
O
Ž
,
é
u
?
¿
š
"
•
þ
s
=
a
T
,b
T
,c
T
T
,
Ù
¥
a
∈
R
n
,b
∈
R
m
,
Ú
c
∈
R
p
,
Œ
s
T
Φ
s
=
γ
1
λ
2
1
+2
θ
2
1
θ
2
2
γ
1
a
T
a
+
θ
2
1
γ
4
γ
1
γ
3
a
T
˜
x
˜
x
T
a
+
γ
2
λ
2
2
+2
θ
2
2
θ
2
3
γ
2
b
T
b
+
θ
2
3
γ
5
γ
2
γ
3
b
T
˜
y
˜
y
T
b
+
k
˜
z
k
2
2
λ
2
3
+2
θ
2
4
k
˜
z
k
2
2
c
T
c
−
θ
2
4
k
˜
z
k
4
2
c
T
˜
z
˜
z
T
c
+
2
θ
2
1
θ
2
3
γ
3
a
T
˜
x
˜
y
T
b
=
λ
2
1
a
T
a
+
λ
2
2
b
T
b
+
k
˜
z
k
2
2
λ
2
3
+
θ
2
4
k
˜
z
k
2
2
c
T
c
+
θ
2
1
θ
2
2
k
˜
y
k
2
2
γ
3
k
˜
x
k
2
2
a
T
˜
x
˜
x
T
a
+
θ
2
2
θ
2
3
k
˜
x
k
2
2
γ
3
k
˜
y
k
2
2
b
T
˜
y
˜
y
T
b
+
θ
2
1
θ
2
3
γ
3
a
T
˜
x
+
b
T
˜
y
2
+
2
θ
2
1
θ
2
2
γ
1
k
˜
x
k
2
2
a
T
k
˜
x
k
2
2
I
n
−
˜
x
˜
x
T
a
+
2
θ
2
2
θ
2
3
γ
2
k
˜
y
k
2
2
b
T
k
˜
y
k
2
2
I
m
−
˜
y
˜
y
T
b
+
θ
2
4
k
˜
z
k
4
2
c
T
k
˜
z
k
2
2
I
p
−
˜
z
˜
z
T
c
>
0
,
ù
L
²
Φ
´
˜
‡
é
¡
½
Ý
.
Ï
d
,
X
(∆
f,
∆
g,
∆
h
)
•
Š
:
•
DOI:10.12677/pm.2023.1351551537
n
Ø
ê
Æ
0
W
å
∆
f
T
,
∆
g
T
,
∆
h
T
T
=
−
Φ
−
1
q.
ƒ
A
,
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
2
=
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
(˜
x,
˜
y,
˜
z
)
2
−
q
T
Φ
−
1
q.
(3.17)
-
Φ
−
1
=
Ψ
11
Ψ
12
0
Ψ
T
12
Ψ
22
0
00Ψ
33
,
Ψ
11
∈
R
n
×
n
,
Ψ
22
∈
R
m
×
m
,
Ψ
33
∈
R
p
×
p
.
²
L
˜
X
Ð
1
C
†
§
k
Ψ
11
=
γ
1
µ
1
I
n
+
θ
2
1
γ
1
Ω
2
µ
1
µ
4
Ω
1
˜
x
˜
x
T
,
Ψ
12
=
−
θ
2
1
θ
2
3
γ
1
γ
2
γ
3
Ω
1
˜
x
˜
y
T
,
Ψ
22
=
γ
2
µ
2
I
m
−
r
2
µ
5
µ
2
Ω
1
˜
y
˜
y
T
,
Ψ
33
=
k
˜
z
k
2
2
µ
3
I
p
+
θ
2
4
µ
3
µ
6
˜
z
˜
z
T
.
²
L
˜
X
„
¡
Ð
?
“
ê
O
Ž
,
Œ
±
q
T
Φ
−
1
q
=
4
θ
4
1
θ
4
2
k
r
f
k
2
2
γ
1
µ
1
+
4
θ
4
2
θ
4
3
k
r
g
k
2
2
γ
2
µ
2
+
4
θ
4
4
k
r
h
k
2
2
k
˜
z
k
2
2
µ
3
+
r
T
f
˜
x
2
l
1
+
r
T
g
˜
y
2
l
2
+
r
T
h
˜
z
2
l
3
+
r
T
f
˜
x
r
T
g
˜
y
l
4
,
(3.18)
ù
p
l
1
=
θ
4
1
k
˜
x
k
2
2
γ
4
(4
θ
2
1
θ
2
2
γ
3
Ω
2
+
γ
4
µ
4
Ω
1
+
θ
2
1
k
˜
x
k
2
2
γ
4
Ω
2
)
γ
1
γ
2
3
µ
1
µ
4
Ω
1
+
θ
4
1
θ
4
3
k
˜
y
k
2
2
γ
2
(Ω
1
−k
˜
y
k
2
2
µ
5
−
4
θ
2
1
θ
2
2
γ
2
3
µ
2
)
γ
2
3
µ
2
Ω
1
+
2
θ
4
1
(2
θ
2
2
γ
4
µ
4
Ω
1
+2
θ
2
1
θ
4
2
γ
3
Ω
2
−
θ
2
1
θ
4
3
k
˜
x
k
2
2
k
˜
y
k
2
2
γ
1
γ
2
γ
4
µ
1
µ
4
)
γ
1
γ
3
µ
1
µ
4
Ω
1
,
l
2
=
θ
4
1
θ
4
3
k
˜
x
k
2
2
γ
1
(
µ
4
Ω
1
+
θ
2
1
k
˜
x
k
2
2
Ω
2
−
4
θ
2
2
θ
2
3
γ
2
3
µ
1
µ
4
)
γ
2
3
µ
1
µ
4
Ω
1
+
θ
4
3
k
˜
y
k
2
2
γ
5
(
γ
5
Ω
1
−
4
θ
2
2
γ
3
µ
5
−k
˜
y
k
2
2
γ
5
µ
5
)
γ
2
γ
2
3
µ
2
Ω
1
+
2
θ
4
3
(2
θ
2
2
γ
5
Ω
1
−
θ
4
1
θ
2
3
k
˜
x
k
2
2
k
˜
y
k
2
2
γ
1
γ
2
γ
5
µ
2
−
2
θ
4
2
γ
3
µ
5
)
γ
2
γ
3
µ
2
Ω
1
,
l
3
=
θ
4
4
(
θ
2
4
−
3
µ
6
)
k
˜
z
k
4
2
µ
3
µ
6
,
l
4
=
2
θ
4
1
θ
2
3
k
˜
x
k
2
2
(
γ
4
µ
4
Ω
1
+
θ
2
1
k
˜
x
k
2
2
γ
4
Ω
2
+2
θ
2
1
θ
2
2
γ
3
Ω
2
−
2
θ
2
2
θ
2
3
γ
2
3
γ
4
µ
1
µ
4
)
γ
2
3
µ
1
µ
4
Ω
1
+
2
θ
2
1
θ
4
3
k
˜
y
k
2
2
(
γ
5
Ω
1
−
2
θ
2
1
θ
2
2
γ
2
3
γ
5
µ
2
−
2
θ
2
2
γ
3
µ
5
−k
˜
y
k
2
2
γ
5
µ
5
)
γ
2
3
µ
2
Ω
1
−
2
θ
4
1
θ
4
3
k
˜
x
k
2
2
k
˜
y
k
2
2
(
γ
4
γ
5
+
θ
2
1
θ
2
3
γ
1
γ
2
)
γ
3
Ω
1
+
4
θ
2
1
θ
2
2
θ
2
3
(
θ
2
1
µ
2
Ω
1
−
2
θ
2
1
θ
2
2
θ
2
3
γ
3
µ
1
µ
2
+
θ
2
3
µ
1
Ω
1
)
γ
3
µ
1
µ
2
Ω
1
.
DOI:10.12677/pm.2023.1351551538
n
Ø
ê
Æ
0
W
å
Ù
¥
γ
1
,γ
2
,γ
3
,γ
4
Ú
γ
5
3
½
n
3.1
c
¡
Ü
©
½
Â
L
,
µ
1
,µ
2
,µ
3
,µ
4
,µ
5
,µ
6
,
Ω
1
Ú
Ω
2
3
½
n
3.2
c
¡
Ü
©
½
Â
L
,
•
ò
(3.18)
Ú
(3.6)
‘
\
(3.17)
¥
Ï
"
L
ˆ
ª
(3.16).
(
•
Ø
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜
x,
˜
y,
˜
z
)
L
ˆ
ª
(3.16)
•
,
w
å
5
é
E
,
,
´
l
O
Ž
Ý
5
w
,
L
ˆ
ª
(3.16)
´
N
´
O
Ž
,
Ï
•
§
•
9\
!
~
!
¦
!
Ø
ù
Ä
$
Ž
.
4.
¦
)
X
Ú
(1.1)(
˜
y
=0
,
˜
x
6
=0
Ú
˜
z
6
=0
)
(
•
Ø
¯
K
-
˜
t
1
=
˜
x
T
,
0
,
˜
z
T
T
´
X
Ú
(1.1)
O
Ž
)
,
½
Â
(
•
Ø
η
S
1
(˜
x,
0
,
˜
z
)
•
η
S
1
(˜
x,
0
,
˜
z
) =min
∆
A,
∆
B,
∆
C,
∆
D,
∆
f,
∆
g,
∆
h
∈F
1
k
∆
A
k
F
k
A
k
F
k
∆
B
k
F
k
B
k
F
k
∆
C
k
F
k
C
k
F
k
∆
D
k
F
k
D
k
F
k
∆
f
k
2
k
f
k
2
k
∆
g
k
2
k
g
k
2
k
∆
h
k
2
k
h
k
2
00
F
,
Ù
¥
F
1
=
∆
A,
∆
B,
∆
C,
∆
D,
∆
f,
∆
g,
∆
h
:
A
+∆
A
(
B
+∆
B
)
T
0
B
+∆
B
−
(
E
+∆
E
)(
C
+∆
C
)
T
0
C
+∆
CD
+∆
D
˜
x
0
˜
z
=
f
+∆
f
g
+∆
g
h
+∆
h
,
∆
A
= ∆
A
T
,
∆
D
= ∆
D
T
.
(4.1)
e
O
Ž
)
˜
t
1
(
•
Ø
´
Å
ì
°
Ý
Ó
þ
?
,
K
O
Ž
)
˜
t
1
´
˜
‡
(
•
-
½
)
,
ƒ
A
ê
Š
Ž
{
´
(
•
-
½
(
½
r
-
½
[14] ).
Ï
d
,
‰
Ñ
(
•
Ø
η
S
1
(˜
x,
0
,
˜
z
)
Œ
O
Ž
ä
N
L
ˆ
ª
ò
k
Ï
u
ÿ
Á¢
S
ê
Š
Ž
{
-
½
5
.
•
d
,
?
˜
Ú
½
Â
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜
x,
0
,
˜
z
)
•
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜
x,
0
,
˜
z
)
=min
∆
A,
∆
B,
∆
C,
∆
D,
∆
f,
∆
g,
∆
h
∈F
1
θ
1
k
∆
A
k
F
θ
2
k
∆
B
k
F
θ
3
k
∆
C
k
F
θ
4
k
∆
D
k
F
λ
1
k
∆
f
k
2
λ
2
k
∆
g
k
2
λ
3
k
∆
h
k
2
00
F
,
(4.2)
Ù
¥
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
Ú
λ
3
•
ë
ê
.
l
k
η
S
1
(˜
x,
0
,
˜
z
) =
η
(
˜
θ
1
,
˜
θ
2
,
˜
θ
3
,
˜
θ
4
,
˜
λ
1
,
˜
λ
2
,
˜
λ
3
)
1
(˜
x,
0
,
˜
z
)
.
(4.3)
•
‰
Ñ
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜
x,
0
,
˜
z
)
(
•
Ø
²
(
L
ˆ
ª
.
·
‚
Ä
k
ï
Ä
Ü
©
(
•
Ø
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
),
Ù
½
Â
•
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
) =min
(∆
A,
∆
B,
∆
C,
∆
D
)
∈F
0
1
"
θ
1
k
∆
A
k
F
θ
2
k
∆
B
k
F
θ
3
k
∆
C
k
F
θ
4
k
∆
D
k
F
#
F
,
(4.4)
DOI:10.12677/pm.2023.1351551539
n
Ø
ê
Æ
0
W
å
Ù
¥
F
0
1
=
∆
A,
∆
B,
∆
C,
∆
D
!
:
A
+∆
A
(
B
+∆
B
)
T
0
B
+∆
B
−
(
E
+∆
E
)(
C
+∆
C
)
T
0
C
+∆
CD
+∆
D
˜
x
0
˜
z
=
f
g
h
,
∆
A
= ∆
A
T
,
∆
D
= ∆
D
T
.
(4.5)
e
¡
‰
Ñ
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
)
²
(
L
ˆ
ª
.
½
n
4.1
b
(˜
x
T
,
0
,
˜
z
T
)
T
÷
v
˜
x
6
= 0
Ú
˜
z
6
= 0
•
X
Ú
(1.1)
˜
‡
O
Ž
)
.
K
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
)
i
2
=
2
θ
2
1
k
˜
x
k
2
2
k
r
f
k
2
2
+
θ
2
2
θ
2
3
γ
1
k
r
g
k
2
2
+
2
θ
2
4
k
˜
z
k
2
2
k
r
h
k
2
2
−
θ
2
1
k
˜
x
k
4
2
r
T
f
˜
x
2
−
θ
2
4
k
˜
z
k
4
2
r
T
h
˜
z
2
,
(4.6)
Ù
¥
r
f
=
f
−
A
˜
x, r
g
=
g
−
B
˜
x
−
C
T
˜
z,r
h
=
h
−
D
˜
z,γ
1
=
θ
2
3
k
˜
x
k
2
2
+
θ
2
2
k
˜
z
k
2
2
.
y
²
d
(4.5)
•
,(∆
A,
∆
B,
∆
C,
∆
D
)
∈F
0
1
…
=
∆
A,
∆
B,
∆
C
Ú
∆
D
÷
v
∆
A
˜
x
=
r
f
,
∆
B
˜
x
=
r
g
−
∆
C
T
˜
z,
∆
D
˜
z
=
r
h
,
∆
A
= ∆
A
T
,
∆
D
= ∆
D
T
.
(4.7)
ò
Ú
n
2
.
1
A^u
(4.7)
1
‡
ª
,
Œ
∆
B
=
r
g
−
∆
C
T
˜
z
˜
x
†
+
Z
I
n
−
˜
x
˜
x
†
, Z
∈
R
m
×
n
(4.8)
ò
Ú
n
2
.
2
A^u
(4.7)
1
˜
!
n
‡
ª
,
Œ
∆
A
=
r
f
˜
x
†
+
˜
x
†
T
r
T
f
I
n
−
˜
x
˜
x
†
+
I
n
−
˜
x
˜
x
†
T
1
I
n
−
˜
x
˜
x
†
, T
1
∈
SR
n
×
n
(4.9)
∆
D
=
r
h
˜
z
†
+
˜
z
†
T
r
T
h
I
p
−
˜
z
˜
z
†
+
I
p
−
˜
z
˜
z
†
T
2
I
p
−
˜
z
˜
z
†
, T
2
∈
SR
p
×
p
.
(4.10)
é
(4.8),(4.9)
Ú
(4.10)
Ò
ü
>
Ó
ž
Frobenius
‰
ê
,
Œ
k
∆
A
k
2
F
=
k
r
f
k
2
2
k
˜
x
k
2
2
+
I
n
−
˜
x
˜
x
†
T
1
I
n
−
˜
x
˜
x
†
2
F
+
I
n
−
˜
x
˜
x
†
r
f
2
2
k
˜
x
k
2
2
=
2
k
r
f
k
2
2
k
˜
x
k
2
2
−
r
T
f
˜
x
2
k
˜
x
k
4
2
+
I
n
−
˜
x
˜
x
†
T
1
I
n
−
˜
x
˜
x
†
2
F
,
(4.11)
k
∆
B
k
2
F
=
r
g
−
∆
C
T
˜
z
2
2
k
˜
x
k
2
2
+
Z
I
n
−
˜
x
˜
x
†
2
F
,
(4.12)
Ú
k
∆
D
k
2
F
=
k
r
h
k
2
2
k
˜
z
k
2
2
+
I
p
−
˜
z
˜
z
†
T
2
I
p
−
˜
z
˜
z
†
2
F
+
I
p
−
˜
z
˜
z
†
r
h
2
2
k
˜
z
k
2
2
=
2
k
r
h
k
2
2
k
˜
z
k
2
2
−
r
T
h
˜
z
2
k
˜
z
k
4
2
+
I
p
−
˜
z
˜
z
†
T
2
I
p
−
˜
z
˜
z
†
2
F
,
(4.13)
DOI:10.12677/pm.2023.1351551540
n
Ø
ê
Æ
0
W
å
Š
â
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
)
½
Â
(4.4),
±
9
L
ˆ
ª
(4.11),(4.12)
Ú
(4.13)
Œ
±
Ñ
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
)
i
2
=min
∆
C
∈
R
p
×
m
,Z
∈
R
m
×
n
T
1
∈
SR
n
×
n
,T
2
∈
SR
p
×
p
n
θ
2
1
k
∆
A
k
2
F
+
θ
2
2
k
∆
B
k
2
F
+
θ
2
3
k
∆
C
k
2
F
+
θ
2
4
k
∆
D
k
2
F
o
=
2
θ
2
1
k
r
f
k
2
2
k
˜
x
k
2
2
+
2
θ
2
4
k
r
h
k
2
2
k
˜
z
k
2
2
−
θ
2
1
r
T
f
˜
x
2
k
˜
x
k
4
2
−
θ
2
4
r
T
h
˜
z
2
k
˜
z
k
4
2
+min
∆
C
∈
R
p
×
m
p
(∆
C
)
,
(4.14)
Ù
¥
p
(∆
C
) =
θ
2
2
r
g
−
∆
C
T
˜
z
2
2
k
˜
x
k
2
2
+
θ
2
3
k
∆
C
k
2
F
=
θ
2
2
k
r
g
k
2
2
k
˜
x
k
2
2
−
2
θ
2
2
˜
z
T
∆
Cr
g
k
˜
x
k
2
2
+
θ
2
2
k
˜
z
T
∆
C
k
2
2
k
˜
x
k
2
2
+
θ
2
3
k
∆
C
k
2
F
.
P
t
1
= vec(∆
C
)
∈
R
mp
,
|
^
Kronecker
È
5
Ÿ
(2.1)
Ú
(2.2),
þ
¡
ª
f
Œ
±
?
˜
Ú
z
•
p
(∆
C
) =
θ
2
2
k
r
g
k
2
2
k
˜
x
k
2
2
+
θ
2
3
t
T
1
I
mp
t
1
−
2
θ
2
2
r
T
g
⊗
˜
z
T
t
1
k
˜
x
k
2
2
+
θ
2
2
t
T
1
(
I
m
⊗
˜
z
)
I
m
⊗
˜
z
T
t
1
k
˜
x
k
2
2
ò
þ
¡
ª
‘
\
(4.14)
¥
,
¿
-
E
¦
^
(2.2),
Œ
±
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
˜
y,
˜
z
)
i
2
=
2
θ
2
1
k
r
f
k
2
2
k
˜
x
k
2
2
+
θ
2
2
k
r
g
k
2
2
k
˜
x
k
2
2
+
2
θ
2
4
k
r
h
k
2
2
k
˜
z
k
2
2
−
θ
2
1
r
T
f
˜
x
2
k
˜
x
k
4
2
−
θ
2
4
r
T
h
˜
z
2
k
˜
z
k
4
2
+min
t
1
∈
R
mp
H
(
t
1
)
,
ù
p
H
(
t
1
) =
t
T
1
K
1
t
1
−
2
k
T
1
t
1
,
Ù
¥
K
1
=
θ
2
3
I
mp
+
θ
2
2
(
I
m
⊗
˜
z
)
I
m
⊗
˜
z
T
k
˜
x
k
2
2
,k
1
=
θ
2
2
(
r
g
⊗
˜
z
)
k
˜
x
k
2
2
,
w
,
K
1
´
˜
‡
é
¡
½
Ý
.
l
t
1
=
K
−
1
1
k
1
ž
,
H
(
t
1
)
U
•
Š
.
ƒ
A
,
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
˜
y,
˜
z
)
i
2
=
2
θ
2
1
k
r
f
k
2
2
k
˜
x
k
2
2
+
θ
2
2
k
r
g
k
2
2
k
˜
x
k
2
2
+
2
θ
2
4
k
r
h
k
2
2
k
˜
z
k
2
2
−
θ
2
1
r
T
f
˜
x
2
k
˜
x
k
4
2
−
θ
2
4
r
T
h
˜
z
2
k
˜
z
k
4
2
−
k
T
1
K
−
1
1
k
1
.
(4.15)
|
^
Sherman-Morrison-Woodbury
ú
ª
(
„
©
z
[15]),
Œ
K
−
1
1
=
1
θ
2
3
I
mp
−
θ
2
2
I
m
⊗
˜
z
˜
z
T
θ
2
3
(
θ
2
3
k
˜
x
k
2
2
+
θ
2
2
k
˜
z
k
2
2
)
²
L
˜
Ð
O
Ž
,
Œ
±
Ñ
k
T
1
K
−
1
1
k
1
=
θ
4
2
k
˜
z
k
2
2
k
˜
x
k
2
2
γ
1
k
r
g
k
2
2
,
Ù
¥
γ
1
=
θ
2
3
k
˜
x
k
2
2
+
θ
2
2
k
˜
z
k
2
2
.
ò
þ
ª
‘
\
(4.15)
¥
,
í
Ñ
(4.6).
y
²
.
.
DOI:10.12677/pm.2023.1351551541
n
Ø
ê
Æ
0
W
å
e
¡
,
|
^
½
n
4.1
¥
Ü
©
(
•
Ø
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
)
L
ˆ
ª
í
Ñ
(
•
Ø
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜
x,
0
,
˜
z
)
ä
N
L
ˆ
ª
.
½
n
4.2
b
(˜
x
T
,
0
,
˜
z
T
)
T
÷
v
˜
x
6
= 0
Ú
˜
z
6
= 0
•
X
Ú
(1.1)
˜
‡
O
Ž
)
.
…
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜
x,
0
,
˜
z
)
½
Â
d
(4.1)
Ú
(4.2)
‰
Ñ
.
K
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜
x,
0
,
˜
z
)
i
2
=
2
θ
2
1
(
µ
1
−
2
θ
2
1
)
k
˜
x
k
2
2
µ
1
k
r
f
k
2
2
+
θ
2
2
θ
2
3
(
µ
2
−
θ
2
2
θ
2
3
)
γ
1
µ
2
k
r
g
k
2
2
+
2
θ
2
4
(
µ
3
−
2
θ
2
4
)
k
˜
z
k
2
2
µ
3
k
r
h
k
2
2
+
θ
2
1
(3
θ
2
1
µ
4
−
θ
4
1
−
µ
1
µ
4
)
k
˜
x
k
4
2
µ
1
µ
4
r
T
f
˜
x
2
+
θ
2
4
(3
θ
2
4
µ
5
−
θ
4
4
−
µ
3
µ
5
)
k
˜
z
k
4
2
µ
3
µ
5
r
T
h
˜
z
2
,
(4.16)
Ù
¥
µ
1
=
k
˜
x
k
2
2
λ
2
1
+2
θ
2
1
, µ
2
=
γ
1
λ
2
2
+
θ
2
2
θ
2
3
, µ
3
=
k
˜
z
k
2
2
λ
2
3
+2
θ
2
4
,
µ
4
=
k
˜
x
k
2
2
λ
2
1
+
θ
2
1
, µ
5
=
k
˜
z
k
2
2
λ
2
3
+
θ
2
4
.
y
²
Š
â
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜
x,
0
,
˜
z
)
½
Â
(4.2)
Ú
Ü
©
(
•
Ø
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
)
L
ˆ
ª
(4.6),
Œ
±
í
Ñ
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜
x,
0
,
˜
z
)
i
2
=min
∆
f
∈
R
n
,
∆
g
∈
R
m
,
∆
h
∈
R
p
X
1
(∆
f,
∆
g,
∆
h
)
,
Ù
¥
X
1
(∆
f,
∆
g,
∆
h
)
=
λ
2
1
k
∆
f
k
2
2
+
λ
2
2
k
∆
g
k
2
2
+
λ
2
3
k
∆
h
k
2
2
+
2
θ
2
1
k
˜
x
k
2
2
k
r
f
+∆
f
k
2
2
+
θ
2
2
θ
2
3
γ
1
k
r
g
+∆
g
k
2
2
+
2
θ
2
4
k
˜
z
k
2
2
k
r
h
+∆
h
k
2
2
−
θ
2
1
k
˜
x
k
4
2
h
(
r
f
+∆
f
)
T
˜
x
i
2
−
θ
2
4
k
˜
z
k
4
2
h
(
r
h
+∆
h
)
T
˜
z
i
2
.
²
L
˜
Ä
O
Ž
,
Œ
±
Ñ
X
1
(∆
f,
∆
g,
∆
h
) =
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
)
i
2
+
∆
f
∆
g
∆
h
T
Φ
1
∆
f
∆
g
∆
h
+2
∆
f
∆
g
∆
h
T
q
1
,
…
Φ
1
=
k
˜
x
k
2
2
λ
2
1
+2
θ
2
1
k
˜
x
k
2
2
I
n
−
θ
2
1
˜
x
˜
x
T
k
˜
x
k
4
2
00
0
γ
1
λ
2
2
+
θ
2
2
θ
2
3
γ
1
I
m
0
00
k
˜
z
k
2
2
λ
2
3
+2
θ
2
4
k
˜
z
k
2
2
I
p
−
θ
2
4
˜
z
˜
z
T
k
˜
z
k
4
2
,
Ú
DOI:10.12677/pm.2023.1351551542
n
Ø
ê
Æ
0
W
å
q
1
=
2
θ
2
1
k
˜
x
k
2
2
r
f
−
θ
2
1
r
T
f
˜
x
k
˜
x
k
4
2
˜
x
θ
2
2
θ
2
3
γ
1
r
g
2
θ
2
4
k
˜
z
k
2
2
r
h
−
θ
2
4
r
T
h
˜
z
k
˜
z
k
4
2
˜
z
.
N
´
y
²
Φ
1
´
˜
‡
é
¡
½
Ý
.
Ï
d
,
X
1
(∆
f,
∆
g,
∆
h
)
•
Š
:
•
∆
f
T
,
∆
g
T
,
∆
h
T
T
=
−
Φ
−
1
1
q
1
.
ƒ
A
,
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜
x,
0
,
˜
z
)
i
2
=
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜
x,
0
,
˜
z
)
i
2
−
q
T
1
Φ
−
1
1
q
1
.
(4.17)
Ù
¥
Φ
−
1
1
=
k
˜
x
k
2
2
µ
1
I
n
+
θ
2
1
µ
1
µ
4
˜
x
˜
x
T
00
0
γ
1
µ
2
I
m
0
00
k
˜
z
k
2
2
µ
3
I
p
+
θ
2
4
µ
3
µ
5
˜
z
˜
z
T
.
²
L
˜
X
Ð
?
“
ê
O
Ž
,
Œ
±
q
T
1
Φ
−
1
1
q
1
=
4
θ
4
1
k
r
f
k
2
2
k
˜
x
k
2
2
µ
1
+
θ
4
2
θ
4
3
k
r
g
k
2
2
γ
1
µ
2
+
4
θ
4
4
k
r
h
k
2
2
k
˜
z
k
2
2
µ
3
+
θ
4
1
(
θ
2
1
−
3
µ
4
)
k
˜
x
k
4
2
µ
1
µ
4
r
T
f
˜
x
2
+
θ
4
4
(
θ
2
4
−
3
µ
5
)
k
˜
z
k
4
2
µ
3
µ
5
r
T
h
˜
z
2
.
(4.18)
Ù
¥
γ
1
3
½
n
4.1
c
¡
Ü
©
½
Â
L
,
µ
1
,µ
2
,µ
3
,µ
4
Ú
µ
5
3
½
n
4.2
c
¡
Ü
©
½
Â
L
,
•
ò
(4.18)
Ú
(4.6)
‘
\
(4.17)
¥
Ï
"
L
ˆ
ª
(4.16).
½
n
4.3
X
J
˜
x
= 0
,
˜
y
6
= 0
Ú
˜
z
6
= 0,
Œ
±
a
q
þ
¡
y
²
‰
Ñ
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
2
(0
,
˜
y,
˜
z
)
i
2
=
θ
2
1
(
µ
1
−
θ
2
1
)
k
˜
y
k
2
2
µ
1
k
r
f
k
2
2
+
2
θ
2
2
θ
2
3
(
µ
2
−
2
θ
2
2
θ
2
3
)
γ
1
µ
2
k
r
g
k
2
2
+
2
θ
2
2
θ
2
4
(
µ
3
−
2
θ
2
2
θ
2
4
)
γ
2
µ
3
k
r
h
k
2
2
+
r
T
g
˜
y
2
k
1
+
r
T
h
˜
z
2
k
2
+
r
T
g
˜
y
r
T
h
˜
z
k
3
,
(4.19)
Ù
¥
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
Ú
λ
3
•
ë
ê
.
Ù
¥
r
f
=
f
−
B
T
˜
y, r
g
=
−
g
−
E
˜
y
+
C
T
˜
z,r
h
=
h
−
C
˜
y
−
D
˜
z,
γ
1
=
θ
2
2
k
˜
y
k
2
2
+2
θ
2
3
k
˜
z
k
2
2
, γ
2
= 2
θ
2
4
k
˜
y
k
2
2
+
θ
2
2
k
˜
z
k
2
2
, γ
3
=
θ
2
4
k
˜
y
k
4
2
+
θ
2
2
k
˜
y
k
2
2
k
˜
z
k
2
2
+
θ
2
3
k
˜
z
k
4
2
,
γ
4
= 2
θ
2
3
θ
2
4
k
˜
z
k
2
2
−
θ
2
2
θ
2
4
k
˜
y
k
2
2
−
θ
4
2
k
˜
z
k
2
2
, γ
5
= 2
θ
2
3
θ
2
4
k
˜
y
k
2
2
−
θ
2
2
θ
2
3
k
˜
z
k
2
2
−
θ
4
2
k
˜
y
k
2
2
,
DOI:10.12677/pm.2023.1351551543
n
Ø
ê
Æ
0
W
å
Ú
µ
1
=
k
˜
y
k
2
2
λ
2
1
+
θ
2
1
, µ
2
=
γ
1
λ
2
2
+2
θ
2
2
θ
2
3
, µ
3
=
γ
2
λ
2
3
+2
θ
2
2
θ
2
4
, µ
4
=
γ
1
γ
3
λ
2
2
+2
θ
2
2
θ
2
3
γ
3
+
θ
2
3
γ
4
k
˜
y
k
2
2
,
µ
5
=
θ
2
4
γ
1
γ
3
γ
5
λ
2
2
+2
θ
2
2
θ
2
3
θ
2
4
γ
3
γ
5
+
θ
2
3
θ
2
4
γ
4
γ
5
k
˜
y
k
2
2
−
θ
4
3
θ
4
4
k
˜
y
k
2
2
γ
1
γ
2
,
Ω
1
=
γ
3
µ
3
µ
4
+
k
˜
z
k
2
2
µ
5
,
Ω
2
=
θ
2
3
θ
4
4
k
˜
z
k
2
2
γ
1
γ
2
γ
3
µ
2
−
γ
3
γ
4
µ
3
µ
4
−k
˜
z
k
2
2
γ
4
µ
5
,
Ú
k
1
=
θ
2
3
γ
4
(
µ
2
Ω
1
−
2
θ
2
2
θ
2
3
Ω
1
+2
θ
4
3
θ
4
4
k
˜
y
k
2
2
k
˜
z
k
2
2
γ
1
γ
2
µ
2
)
γ
1
γ
3
µ
2
Ω
1
−
θ
4
3
(2
θ
2
2
γ
3
+
k
˜
y
k
2
2
γ
4
)(2
θ
2
2
θ
2
3
γ
3
Ω
2
+
γ
4
µ
4
Ω
1
+
θ
2
3
k
˜
y
k
2
2
γ
4
Ω
2
)
γ
1
γ
2
3
µ
2
µ
4
Ω
1
−
θ
4
3
θ
4
4
k
˜
z
k
2
2
γ
2
(Ω
1
−k
˜
z
k
2
2
µ
5
−
4
θ
2
2
θ
2
3
γ
2
3
µ
3
)
γ
2
3
µ
3
Ω
1
,
k
2
=
θ
2
4
γ
5
(
µ
3
Ω
1
−
2
θ
2
2
θ
2
4
Ω
1
+2
θ
4
3
θ
4
4
k
˜
y
k
2
2
k
˜
z
k
2
2
γ
1
γ
2
µ
3
)
γ
2
γ
3
µ
3
Ω
1
−
θ
4
4
(2
θ
2
2
γ
3
+
k
˜
z
k
2
2
γ
5
)(
γ
5
Ω
1
−
2
θ
2
2
γ
3
µ
5
−k
˜
z
k
2
2
γ
5
µ
5
)
γ
2
γ
2
3
µ
3
Ω
1
−
θ
4
3
θ
4
4
k
˜
y
k
2
2
γ
1
(
µ
4
Ω
1
+
θ
2
3
k
˜
y
k
2
2
Ω
2
−
4
θ
2
2
θ
2
4
γ
2
3
µ
2
µ
4
)
γ
2
3
µ
2
µ
4
Ω
1
,
k
3
=
θ
2
3
θ
4
4
(2
γ
3
µ
3
Ω
1
−k
˜
z
k
2
2
γ
5
Ω
1
+2
θ
2
2
k
˜
z
k
2
2
γ
3
µ
5
+
k
˜
z
k
4
2
γ
5
µ
5
)
γ
2
3
µ
3
Ω
1
−
θ
4
3
θ
2
4
(2
θ
2
2
γ
3
+
k
˜
y
k
2
2
γ
4
)(
µ
4
Ω
1
+
θ
2
3
k
˜
y
k
2
2
Ω
2
)
γ
2
3
µ
2
µ
4
Ω
1
−
θ
2
3
θ
4
4
(2
θ
2
2
γ
3
+
k
˜
z
k
2
2
γ
5
)(Ω
1
−k
˜
z
k
2
2
µ
5
−
4
θ
2
2
θ
2
3
γ
2
3
µ
3
−
2
θ
2
3
k
˜
y
k
2
2
γ
3
γ
4
µ
3
)
γ
2
3
µ
3
Ω
1
−
2
θ
2
3
θ
2
4
(
θ
2
2
θ
2
3
µ
3
Ω
1
−
θ
4
3
θ
4
4
k
˜
y
k
2
2
k
˜
z
k
2
2
γ
1
γ
2
µ
2
µ
3
+
θ
2
2
θ
2
4
µ
2
Ω
1
)
γ
3
µ
2
µ
3
Ω
1
−
θ
4
3
θ
2
4
k
˜
y
k
2
2
(2
θ
2
2
θ
2
3
γ
3
Ω
2
+
γ
4
µ
4
Ω
1
+
θ
2
3
k
˜
y
k
2
2
γ
4
Ω
2
)
γ
2
3
µ
2
µ
4
Ω
1
½
n
4.4
X
J
˜
z
= 0
,
˜
x
6
= 0
Ú
˜
y
6
= 0,
Œ
±
a
q
þ
¡
y
²
‰
Ñ
h
η
(
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
3
(˜
x,
˜
y,
0)
i
2
=
2
θ
2
1
θ
2
2
(
µ
1
−
2
θ
2
1
θ
2
2
)
γ
1
µ
1
k
r
f
k
2
2
+
2
θ
2
2
θ
2
3
(
µ
2
−
2
θ
2
2
θ
2
3
)
γ
2
µ
2
k
r
g
k
2
2
+
θ
2
3
(
µ
3
−
θ
2
3
)
k
˜
y
k
2
2
µ
3
k
r
h
k
2
2
+
r
T
f
˜
x
2
k
1
+
r
T
g
˜
y
2
k
2
+
r
T
f
˜
x
r
T
g
˜
y
k
4
,
(4.20)
DOI:10.12677/pm.2023.1351551544
n
Ø
ê
Æ
0
W
å
Ù
¥
θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
Ú
λ
3
•
ë
ê
.
Ù
¥
r
f
=
f
−
A
˜
x
−
B
T
˜
y, r
g
=
−
g
+
B
˜
x
−
E
˜
y, r
h
=
h
−
C
˜
y,µ
3
=
k
˜
y
k
2
2
λ
2
3
+
θ
2
3
.
¿
…
γ
1
,γ
2
,γ
3
,γ
4
,γ
5
,µ
1
,µ
2
,µ
4
,µ
5
,
Ω
1
,
Ω
2
,k
1
,k
2
,k
4
†
1
n
Ü
©
(
Ý
C
Ø
6
Ä
)
¤
½
Â
ƒ
Ó
.
5.
ê
Š
¢
!
ò
‰
Ñ
˜
‡
ê
Š
~
f
5
'
1
3
!
¥
í
Ñ
(
•
Ø
η
S
(˜
x,
˜
y,
˜
z
)
Ú
ƒ
A
Ã
(
•
Ø
η
(
˜
t
).
ê
Š
¢
3
MATLABR2015b
¥
?
1
,
Å
ì
°
Ý
•
2
.
2204
×
10
−
16
.
•
Ä
‚
5
X
Ú
(1.1)
÷
v
A
=
M
1
PM
1
,D
=
M
2
PM
2
B
=
000100
001000
010000
10
−
3
00000
,C
=
1
−
210
−
2
−
100
1000
Ú
E
=
I
4
,f
=
10
8
,
10
,
0
,
0
,
0
,
0
T
,g
=
10
8
,
1
,
0
,
0
T
,h
=
10
−
8
,
0
,
0
T
Ù
¥
M
1
= diag(1
,
5
,
10
,
50
,
100
,
10000)
,M
2
= diag(1
,
5
,
10)
,
P
= (
p
ij
)
,p
ij
=
(
i
+
j
−
2)!
(
i
−
1)!(
j
−
1)!
ù
‡
¯
K
´
d
©
[8]
¥
Example5.2
?
U
5
.
é
w
,
X
ê
Ý
´
š
Û
É
.
¦
^
À
Ì
p
d
ž
{
Œ
±
˜
‡
O
Ž
)
˜
t
=
˜
x
T
,
˜
y
T
,
˜
z
T
T
,
Ù
¥
˜
x
=
4
.
0418
×
10
8
−
1
.
6445
×
10
8
1
.
0030
×
10
8
−
1
.
4400
×
10
7
2
.
8125
×
10
6
−
4
.
6236
×
10
3
,
˜
y
=
7
.
3927
×
10
5
−
3
.
4302
×
10
7
−
8
.
8214
×
10
7
4
.
0418
×
10
5
Ú
˜
z
=
7
.
6232
×
10
7
−
1
.
7857
×
10
7
3
.
1926
×
10
6
.
d
(1.2)
,
Ã
(
•
Ø
η
(
˜
t
) = 8
.
8414
×
10
−
22
.
d
(3.3)
Ú
(3.16)
,
(
•
Ø
η
S
(˜
x,
˜
y,
˜
z
) = 1
.
4127
×
10
−
8
.
DOI:10.12677/pm.2023.1351551545
n
Ø
ê
Æ
0
W
å
6.
o
(
©
|
^
©
[10,16]
¥
E
|
Ú
Kronecker
È
5
Ÿ
,
Ä
k
ò
3
×
3
¬
Q
:
¯
K
C
q
)
(
•
Ø
ù
˜
Ý
`
z
¯
K
=
z
•
½
g
.
•
Š
¯
K
§
,
|
^
Sherman-Morrison-Woodbury
ú
ª
,
•
ª
¼
(
•
Ø
Œ
O
Ž
ä
N
L
ˆ
ª
.
•
·
‚
‰
Ñ
˜
‡
ê
Š
¢
,
±
y
²
·
‚
(
J
Œ
±
é
N
´
/
^
5
ÿ
Á¢
S
ê
Š
Ž
{
-
½
5
.
Ä
7
‘
8
[
‹
Ž
#
Ñ
“
c
Ä
7
(20JR5RA540)
"
ë
•
©
z
[1]Bunch, J.R.(1987) TheWeakand StrongStabilityof Algorithmsin NumericalLinear Algebra.
LinearAlgebraandItsApplications
,
88-89
,49-66.
https://doi.org/10.1016/0024-3795(87)90102-9
[2]Higham,N.J.(2002)AccuracyandStabilityofNumericalAlgorithms.2ndEdition,SIAM,
Philadelphia.https://doi.org/10.1137/1.9780898718027
[3]Rhebergen,S.,Wells,G.N.,Wathen,A.J.andKatz,R.F.(2015)Three-FieldBlockPre-
conditionersforModelsofCoupledMagma/MantleDynamics.
SIAMJournalonScientific
Computing
,
37
,A2270-A2294.https://doi.org/10.1137/14099718X
[4]Castelletto,N.,White,J.A.andFerronato,M.(2016)ScalableAlgorithmsforThree-Field
MixedFiniteElementCoupledPoromechanics.
JournalofComputationalPhysics
,
327
,894-
918.https://doi.org/10.1016/j.jcp.2016.09.063
[5]Frigo,M.,Castelletto, N.,Ferronato, M.andWhite,J.A.(2021)EfficientSolversforHybridized
Three-FieldMixedFinite Element CoupledPoromechanics.
ComputersandMathematicswith
Applications
,
91
,36-52.https://doi.org/10.1016/j.camwa.2020.07.010
[6]Chen,X.S.,Li,W.,Chen,X.J. and Liu, J.(2012) StructuredBackward Errorsfor Generalized
SaddlePointSystems.
LinearAlgebraandItsApplications
,
436
,3109-3119.
https://doi.org/10.1016/j.laa.2011.10.012
[7]Meng,L.S.,He,Y.W.andMiao,S.X.(2020)StructuredBackwardErrorsforTwoKindsof
GeneralizedSaddlePointSystems.
LinearandMultilinearAlgebra
,
70
,1345-1355.
https://doi.org/10.1080/03081087.2020.1760193
[8]Sun,J.G.(1999)StructuredBackwardErrorsforKKTSystems.
LinearAlgebraandItsAp-
plications
,
288
,75-88.https://doi.org/10.1016/S0024-3795(98)10184-2
DOI:10.12677/pm.2023.1351551546
n
Ø
ê
Æ
0
W
å
[9]Xiang,H.andWei,Y.M.(2007)OnNormwiseStructuredBackwardErrorsforSaddlePoint
Systems.
SIAMJournalonMatrixAnalysisandApplications
,
29
,838-849.
https://doi.org/10.1137/060663684
[10]Zheng, B.and Lv,P. (2020) Structured Backward Error Analysis forGeneralized Saddle Point
Problems.
AdvancesinComputationalMathematics
,
46
,ArticleNo.34.
https://doi.org/10.1007/s10444-020-09787-x
[11]Sun, J.G. (1996) Optimal Backward PerturbationBounds for Linear Systemsand Linear Least
SquaresProblems.Tech.Rep.,UMINF96.15,DepartmentofComputingScience,UmeaUni-
versity,Umea.
[12]Horn,R.A. andJohnson,C.R. (1991)Topics inMatrixAnalysis. Cambridge UniversityPress,
Cambridge.https://doi.org/10.1017/CBO9780511840371
[13]Sun,J.G.(2001)MatrixPerturbationAnalysis.2ndEdition,SciencePress,Beijing.
[14]Boffi,D.,Brezzi,F.andFortin,M.(2013)MixedFiniteElementMethodsandApplications.
In:
SpringerSeriesinComputationalMathematics
,Springer,NewYork.
https://doi.org/10.1007/978-3-642-36519-5
[15]Golub, G.H.andVanLoan,C.F.(2013)MatrixComputations.4thEdition,TheJohnsHopkins
UniversityPress,Baltimore.
[16]Lv,P.andZheng,B.(2022)StructuredBackwardErrorAnalysisforaClassofBlockThree-
by-ThreeSaddlePointProblems.
NumericalAlgorithms
,
90
,59-78.
https://doi.org/10.1007/s11075-021-01179-6
DOI:10.12677/pm.2023.1351551547
n
Ø
ê
Æ