设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(5),1528-1547
PublishedOnlineMay2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.135155
'u˜aAÏ3×3¬Q:XÚ)(•
Ø©Û
000WWWååå
Ü“‰ŒÆ§êƆÚOÆ§[‹=²
ÂvFϵ2023c423F¶¹^Fϵ2023c524F¶uÙFϵ2023c531F
Á‡
Cc5§˜aAÏ3×3 ¬Q:XÚ2•A^u˜Ôn¯K¥"•BuÿÁ¢Sꊎ{
-½5§©éù«a.3×3 ¬Q:XÚ ?1(•Ø©Û§ ¿‰Ñ(•Ø
ŒOŽäNúª"Äu(•Ø§·‚?1ꊢ"ꊢ(JL²TLˆªŒ
^uu¢SŽ{-½5"
'…c
3×3 ¬Q:¯K§•Ø§(•Ø
StructuredBackwardErrorAnalysison
aSpecialClassofBlockThree-by-Three
SaddlePointSystems
JialuXing
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Apr.23
rd
,2023;accepted:May24
th
,2023;published:May31
st
,2023
©ÙÚ^:0Wå.'u˜aAÏ3×3¬Q:XÚ)(•Ø©Û[J].nØêÆ,2023,13(5):1528-1547.
DOI:10.12677/pm.2023.135155
0Wå
Abstract
Inrecentyears,aspecialclassofblockthree-by-threesaddlepointsystemsiswidely
appliedtoanumberofphysicalproblems.Inordertoevaluatethestabilityofactual
numericalalgorithms,thispaperperformsthestructuredbackwarderroranalysis
forthistypeofblockthree-by-threesaddlepointsystemandpresentsanexplicit
andcomputableformulaforthestructuredbackwarderror.Basedonthestructured
backwarderror,weperformnumericalexp eriment.Numericalexampleshowsthat
theexpressionsareusefulfortestingthestabilityofpracticalalgorithms.
Keywords
Block3×3SaddlePointProblem,BackwardError,StructuredBackwardError
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©ïÄ±e3×3 ¬Q:¯K(•Ø




AB
T
0
B−EC
T
0CD








x
y
z




=




f
g
h




,(1.1)
Ù¥A∈R
n×n
ÚD∈R
p×p
´é¡½Ý,E∈R
m×m
´é¡Œ½Ý,B∈R
m×n
Ú
C∈R
p×m
´Ý/Ý.B
T
“LB=˜,C
T
“LC=˜.éA,B,C,D,Eåy‚5
XÚ(1.1) )•3•˜5.‰½,‡(¯KCq),(•Ø©Û•)3êâ¥Ï阇
•(6Ä,¦Cq)´(6įK°(),•(6ÄŒ¡•(•
Ø.(•Ø©ÛŒ ±£‰¢S)û¯K†·‚އ)û¯KkõC,¿«êŠŽ
{-½5[1,2].‚5XÚ(1.1))u¯õ‰ÆOŽ+•¥,'XÍÜ/¢-ñóÄåÆ•Zý
N!ìmu[3],\„ÍÜš Y寕§n|S“¦)¬ýN!ìmu[4],-½ÍÜšY寷Ü
¬¬n/ýN!ìmu[5] .
DOI:10.12677/pm.2023.1351551529nØêÆ
0Wå
3×3¬Q:XÚ(1.1) Œ±T/©•2ÂQ:¯K,=:




AB
T
0
B−EC
T
0CD








x
y
z




=




f
g
h




½




AB
T
0
B−EC
T
0CD








x
y
z




=




f
g
h




.
Cc5,˜Æö[6–10] ®²é2ÂQ:XÚ?1(•Ø©Û,y²ƒAꊎ{ä
kr-½5.¦+3×3 ¬Q:XÚ(1.1) Œ±@•´2Â(2×2 ¬) Q:¯K,Ï•§
äkAÏ3×3¬(,þã(•Ø©Û¿ØUO(/L«XÚ(1.1).3©¥,·‚òé
3×3¬Q:XÚ(1.1) ?1(•Ø©Û.
•{B,r(1.1) PŠ
At= d.
é?¿OŽ)
˜
t=

˜x
T
,˜y
T
,˜z
T

T
,½ÂÙÃ(•Øη(
˜
t)•
η(
˜
t) =min
∆A,∆d






k∆Ak
F
kAk
F
,
k∆dk
2
kdk
2





2
: (A+∆A)
˜
t= d+∆d

,
þ¡ªfŒ±?˜ÚL«•[11]
η(
˜
t) =
kd−A
˜
tk
2
q
kAk
2
F
k
˜
tk
2
2
+kdk
2
2
,(1.2)
Ù¥k·k
F
Úk·k
2
©OL«ÝFrobenius ‰êÚ2-‰ê.eη(
˜
t)´Åì°ÝÓþ?,KOŽ
)
˜
tOŽL§´•-½§=
˜
t´˜‡•-½).I‡5¿´,XJXêÝAäk,«
AÏ(,g,‡¦A+∆A•äk†AƒÓ(.3ù«œ¹e,g,‡•Ä(•Ø.
©(SüXeµ
312 !¥,̇0Kronecker ȧÚ¡y²¥I‡^A‡'…Ún.
313 !¥,í3 ×3 ¬Q:XÚ(1.1) (ÝCØ6Ä) (•ØäNŒOŽ
Lˆª.
314 !¥,í3×3 ¬Q:XÚ(1.1) ((i)˜y= 0,(ii)˜x= 0,(iii)˜z= 0) (•Ø
äNŒOŽLˆª.
315 !¥,ÏLꊢ5y²íÑLˆªéuÿÁ¦)3×3 ¬Q:XÚ¢SêŠ
Ž{-½5´k^.
316 !¥,é©óŠ?1o(.
2.ý•£
©^R
m×n
ÚSR
n×n
©OL«m×n¢Ý8ÜÚn×n¢é¡Ý8Ü,^A
†
L«ÝAMoore-Penrose_,X= (x
ij
) ∈R
m×n
,Z∈R
p×q
.XÚZƒmKronecker Ƚ
DOI:10.12677/pm.2023.1351551530nØêÆ
0Wå
•(„©z[12],14Ù])
X⊗Z= (x
ij
Z) ∈R
mp×nq
.
d©z[12] •
vec(XYZ) =

Z
T
⊗X

vec(Y),
(2.1)
(X⊗Z)
T
= X
T
⊗Z
T
,
(2.2)
(X⊗Z)(C⊗G) = (XC⊗ZG),(2.3)
Ù¥Y∈R
n×p
,CÚG•Ü·êÝ,vec(Y) ½Â•òÝY¤k•gæU¤˜‡•þ
•þ.
3!¥,·‚ò0˜Ún,ùÚnò3e5Ù!¥¦^.
Ún2.1([8,13])u∈R
m
Úp∈R
n
®•.½Â
X=

X∈R
n×m
: Xu= p

.
K,X6= ∅…=pu
†
u= p,…3dœ¹e,?¿X∈XŒL«•
X= pu
†
+Z

I
m
−uu
†

,Z∈R
n×m
.
Ún2.2([8,13])b,c∈R
n
®•.½Â
H=

H∈SR
n×n
: Hb= c

.
K,H6= ∅…=bÚc÷vcb
†
b= c,…3d^‡e,?¿H∈HŒL«•
H= cb
†
+

b
†

T
c
T

I
n
−bb
†

+

I
n
−bb
†

T

I
n
−bb
†

,
Ù¥T∈SR
n×n
.
3.¦)XÚ(1.1)(ÝCØ6Ä)(•Ø¯K
-
˜
t=

˜x
T
,˜y
T
,˜z
T

T
´XÚ(1.1) OŽ),½Â(•Øη
S
(˜x,˜y,˜z)•
η
S
(˜x,˜y,˜z) =min







∆A,∆B,∆E,
∆D,∆f,∆g,
∆h







∈F












k∆Ak
F
kAk
F
k∆Bk
F
kBk
F
k∆Ek
F
kEk
F
k∆Dk
F
kDk
F
k∆fk
2
kfk
2
k∆gk
2
kgk
2
k∆hk
2
khk
2
00












F
,
DOI:10.12677/pm.2023.1351551531nØêÆ
0Wå
Ù¥
F=











∆A,∆B,∆E,
∆D,∆f,∆g,
∆h




:




A+∆A(B+∆B)
T
0
B+∆B−(E+∆E)C
T
0CD+∆D








˜x
˜y
˜z




=




f+∆f
g+∆g
h+∆h




,
∆A= ∆A
T
,
∆D= ∆D
T
,
∆E= ∆E
T







.
(3.1)
eOŽ)
˜
t(•Ø´Åì°ÝÓþ?,KOŽ)
˜
t´˜‡(•-½),ƒAꊎ
{´(•-½(½r-½[14] ).Ïd,‰Ñ(•Øη
S
(˜x,˜y,˜z) ŒOŽäNLˆª
òkÏuÿÁ¢Sꊎ{-½5.•d,?˜Ú½Âη
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z)•
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z)
=min







∆A,∆B,∆E,
∆D,∆f,∆g,
∆h







∈F












θ
1
k∆Ak
F
θ
2
k∆Bk
F
θ
3
k∆Ek
F
θ
4
k∆Dk
F
λ
1
k∆fk
2
λ
2
k∆gk
2
λ
3
k∆hk
2
00












F
,
(3.2)
Ù¥θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
Úλ
3
•ëê.eA6=0,B6= 0,E6= 0,D6= 0,f6= 0,g6= 0Úh6= 0,K
˜
θ
1
=
1
kAk
F
,
˜
θ
2
=
1
kBk
F
,
˜
θ
3
=
1
kEk
F
,
˜
θ
4
=
1
kDk
F
,
˜
λ
1
=
1
kfk
2
,
˜
λ
2
=
1
kgk
2
,and
˜
λ
3
=
1
khk
2
,
lk
η
S
(˜x,˜y,˜z) = η
(
˜
θ
1
,
˜
θ
2
,
˜
θ
3
,
˜
θ
4
,
˜
λ
1
,
˜
λ
2
,
˜
λ
3
)
(˜x,˜y,˜z).(3.3)
•‰Ñη
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z) (•Ø²(Lˆª.·‚ÄkïÄÜ©(
•Øη
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z),ٽ•
η
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z) =min
(∆A,∆B,∆E,∆D)∈F
0





"
θ
1
k∆Ak
F
θ
2
k∆Bk
F
θ
3
k∆Ek
F
θ
4
k∆Dk
F
#





F
,(3.4)
Ù¥
F
0
=





∆A,∆B,
∆E,∆D
!
:



A+∆A(B+∆B)
T
0
B+∆B−(E+∆E)C
T
0CD+∆D






˜x
˜y
˜z



=



f
g
h



,
∆A= ∆A
T
,
∆D= ∆D
T
,
∆E= ∆E
T





.
(3.5)
e¡‰Ñη
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z)²(Lˆª.
½n3.1b(˜x
T
,˜y
T
,˜z
T
)
T
÷v˜x6= 0,˜y6= 0 Ú˜z6= 0•XÚ(1.1) ˜‡OŽ).K

η
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z)

2
=
2θ
2
1
θ
2
2
γ
1
kr
f
k
2
2
+
2θ
2
2
θ
2
3
γ
2
kr
g
k
2
2
+
2θ
2
4
k˜zk
2
2
kr
h
k
2
2
+
θ
2
1
γ
4
γ
1
γ
3

r
T
f
˜x

2
+
θ
2
3
γ
5
γ
2
γ
3

r
T
g
˜y

2
−
θ
2
4
k˜zk
4
2

r
T
h
˜z

2
+
2θ
2
1
θ
2
3
γ
3

r
T
f
˜x

r
T
g
˜y

,
(3.6)
DOI:10.12677/pm.2023.1351551532nØêÆ
0Wå
Ù¥
r
f
= f−A˜x−B
T
˜y, r
g
= −g+B˜x−E˜y+C
T
˜z,r
h
= h−C˜y−D˜z,
γ
1
= θ
2
2
k˜xk
2
2
+2θ
2
1
k˜yk
2
2
, γ
2
= 2θ
2
3
k˜xk
2
2
+θ
2
2
k˜yk
2
2
, γ
3
= θ
2
3
k˜xk
4
2
+θ
2
2
k˜xk
2
2
k˜yk
2
2
+θ
2
1
k˜yk
4
2
,
γ
4
= 2θ
2
1
θ
2
3
k˜yk
2
2
−θ
2
2
θ
2
3
k˜xk
2
2
−θ
4
2
k˜yk
2
2
, γ
5
= 2θ
2
1
θ
2
3
k˜xk
2
2
−θ
2
1
θ
2
2
k˜yk
2
2
−θ
4
2
k˜xk
2
2
.
y²d(3.5)•,(∆A,∆B,∆E,∆D) ∈F
0
…=∆A,∆B,∆EÚ∆D÷v
∆A˜x= r
f
−∆B
T
˜y,∆E˜y= r
g
+∆B˜x,∆D˜z= r
h
,∆A= ∆A
T
,∆D= ∆D
T
,∆E= ∆E
T
.(3.7)
òÚn2.2 A^u(3.7),Œ
∆A=

r
f
−∆B
T
˜y

˜x
†
+

˜x
†

T

r
f
−∆B
T
˜y

T

I
n
−˜x˜x
†

+

I
n
−˜x˜x
†

T
1

I
n
−˜x˜x
†

,(3.8)
Ù¥T
1
∈SR
n×n
.
∆E= (r
g
+∆B˜x)˜y
†
+

˜y
†

T
(r
g
+∆B˜x)
T

I
m
−˜y˜y
†

+

I
m
−˜y˜y
†

T
2

I
m
−˜y˜y
†

,(3.9)
Ù¥T
2
∈SR
m×m
.
∆D= r
h
˜z
†
+

˜z
†

T
r
T
h

I
p
−˜z˜z
†

+

I
p
−˜z˜z
†

T
3

I
p
−˜z˜z
†

,(3.10)
Ù¥T
3
∈SR
p×p
.
é(3.8),(3.9) Ú(3.10) Òü>ÓžFrobenius‰ê,Œ
k∆Ak
2
F
=


r
f
−∆B
T
˜y


2
2
k˜xk
2
2
+



I
n
−˜x˜x
†

T
1

I
n
−˜x˜x
†



2
F
+



I
n
−˜x˜x
†

r
f
−∆B
T
˜y



2
2
k˜xk
2
2
=
2


r
f
−∆B
T
˜y


2
2
k˜xk
2
2
−

r
T
f
˜x−˜y
T
∆B˜x

2
k˜xk
4
2
+



I
n
−˜x˜x
†

T
1

I
n
−˜x˜x
†



2
F
,
(3.11)
k∆Ek
2
F
=
kr
g
+∆B˜xk
2
2
k˜yk
2
2
+



I
m
−˜y˜y
†

T
2

I
m
−˜y˜y
†



2
F
+



I
m
−˜y˜y
†

(r
g
+∆B˜x)


2
2
k˜yk
2
2
=
2kr
g
+∆B˜xk
2
2
k˜yk
2
2
−

r
T
g
˜y+˜y
T
∆B˜x

2
k˜yk
4
2
+



I
m
−˜y˜y
†

T
2

I
m
−˜y˜y
†



2
F
,
(3.12)
Ú
k∆Dk
2
F
=
kr
h
k
2
2
k˜zk
2
2
+



I
p
−˜z˜z
†

T
3

I
p
−˜z˜z
†



2
F
+



I
p
−˜z˜z
†

r
h


2
2
k˜zk
2
2
=
2kr
h
k
2
2
k˜zk
2
2
−

r
T
h
˜z

2
k˜zk
4
2
+



I
p
−˜z˜z
†

T
3

I
p
−˜z˜z
†



2
F
,
(3.13)
Šâη
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z)½Â(3.4),±9Lˆª(3.11),(3.12)Ú(3.13)Œ±Ñ
DOI:10.12677/pm.2023.1351551533nØêÆ
0Wå

η
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z)

2
=min
∆B∈R
m×n
,T
1
∈SR
n×n
T
2
∈SR
m×m
,T
3
∈SR
p×p
n
θ
2
1
k∆Ak
2
F
+θ
2
2
k∆Bk
2
F
+θ
2
3
k∆Ek
2
F
+θ
2
4
k∆Dk
2
F
o
=
2θ
2
4
kr
h
k
2
2
k˜zk
2
2
−
θ
2
4

r
T
h
˜z

2
k˜zk
4
2
+min
∆B∈R
m×n
p(∆B),
(3.14)
Ù¥
p(∆B) =
2θ
2
1


r
f
−∆B
T
˜y


2
2
k˜xk
2
2
−
θ
2
1

r
T
f
˜x−˜y
T
∆B˜x

2
k˜xk
4
2
+
2θ
2
3
kr
g
+∆B˜xk
2
2
k˜yk
2
2
−
θ
2
3

r
T
g
˜y+˜y
T
∆B˜x

2
k˜yk
4
2
+θ
2
2
k∆Bk
2
F
=
2θ
2
1
kr
f
k
2
2
k˜xk
2
2
+
2θ
2
3
kr
g
k
2
2
k˜yk
2
2
−
θ
2
1

r
T
f
x

2
k˜xk
4
2
−
θ
2
3

r
T
g
˜y

2
k˜yk
4
2
+
2θ
2
1

r
T
f
˜x

˜y
T
∆B˜x

k˜xk
4
2
−
2θ
2
3

r
T
g
˜y

˜y
T
∆B˜x

k˜yk
4
2
−
(θ
2
1
k˜yk
4
2
+θ
2
3
k˜xk
4
2
)

˜y
T
∆B˜x

2
k˜xk
4
2
k˜yk
4
2
−
4θ
2
1

˜y
T
∆Br
f

k˜xk
2
2
+
4θ
2
3

r
T
g
∆B˜x

k˜yk
2
2
+
2θ
2
1
k˜y
T
∆Bk
2
2
k˜xk
2
2
+
2θ
2
3
k∆B˜xk
2
2
k˜yk
2
2
+θ
2
2
k∆Bk
2
F
.
Pt= vec(∆B) ∈R
nm
,|^KroneckerÈ5Ÿ(2.1)Ú(2.2),þ¡ªfŒ±?˜Úz•
p(∆B)
=
2θ
2
1
kr
f
k
2
2
k˜xk
2
2
+
2θ
2
3
kr
g
k
2
2
k˜yk
2
2
−
θ
2
1

r
T
f
x

2
k˜xk
4
2
−
θ
2
3

r
T
g
˜y

2
k˜yk
4
2
+θ
2
2
t
T
I
nm
t+
2θ
2
1

r
T
f
˜x

˜x
T
⊗˜y
T

t
k˜xk
4
2
−
2θ
2
3

r
T
g
˜y

˜x
T
⊗˜y
T

t
k˜yk
4
2
−
(θ
2
3
k˜xk
4
2
+θ
2
1
k˜yk
4
2
)t
T
(˜x⊗˜y)

˜x
T
⊗˜y
T

t
k˜xk
4
2
k˜yk
4
2
−
4θ
2
1

r
T
f
⊗˜y
T

t
k˜xk
2
2
+
2θ
2
1
t
T
(I
n
⊗˜y)

I
n
⊗˜y
T

t
k˜xk
2
2
+
4θ
2
3

˜x
T
⊗r
T
g

t
k˜yk
2
2
+
2θ
2
3
t
T
(˜x⊗I
m
)

˜x
T
⊗I
m

t
k˜yk
2
2
òþ¡ª‘\(3.14) ¥,¿-E¦^(2.2),Œ±

η
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z)

2
=
2θ
2
1
kr
f
k
2
2
k˜xk
2
2
+
2θ
2
3
kr
g
k
2
2
k˜yk
2
2
+
2θ
2
4
kr
h
k
2
2
k˜zk
2
2
−
θ
2
1

r
T
f
x

2
k˜xk
4
2
−
θ
2
3

r
T
g
˜y

2
k˜yk
4
2
−
θ
2
4

r
T
h
˜z

2
k˜zk
4
2
+min
t∈R
nm
H(t),
ùpH(t) = t
T
Kt−2k
T
t,Ù¥
K=θ
2
2
I
nm
+
2θ
2
1
(I
n
⊗˜y)

I
n
⊗˜y
T

k˜xk
2
2
+
2θ
2
3
(˜x⊗I
m
)

˜x
T
⊗I
m

k˜yk
2
2
−
(θ
2
1
k˜yk
4
2
+θ
2
3
k˜xk
4
2
)(˜x⊗˜y)

˜x
T
⊗˜y
T

k˜xk
4
2
k˜yk
4
2
,
DOI:10.12677/pm.2023.1351551534nØêÆ
0Wå
Ú
k=
2θ
2
1
(r
f
⊗˜y)
k˜xk
2
2
−
2θ
2
3
(˜x⊗r
g
)
k˜yk
2
2
−
θ
2
1

r
T
f
˜x

k˜xk
4
2
−
θ
2
3

r
T
g
˜y

k˜yk
4
2
!
(˜x⊗˜y),
|^(2.3),¿5¿

I
n
−˜x˜x
†

2
=

I
n
−˜x˜x
†

,

I
m
−˜y˜y
†

2
=

I
m
−˜y˜y
†

Ú˜x
†
=˜x
T
/k˜xk
2
2
,˜y
†
=
˜y
T
/k˜yk
2
2
,Œ±Ñ
K=θ
2
2
I
nm
+
θ
2
1
(I
n
⊗˜y)

I
n
⊗˜y
T

k˜xk
2
2
+
θ
2
3
(˜x⊗I
m
)

˜x
T
⊗I
m

k˜yk
2
2
+
θ
2
1

I
n
−˜x˜x
†

⊗˜y

I
n
−˜x˜x
†

⊗˜y
T

k˜xk
2
2
+
θ
2
3

˜x⊗

I
m
−˜y˜y
†

˜x
T
⊗

I
m
−˜y˜y
†

k˜yk
2
2
.
²w/,K´˜‡é¡½Ý.lt= K
−1
kž,H(t)U•Š.ƒA,

η
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z)

2
=
2θ
2
1
kr
f
k
2
2
k˜xk
2
2
+
2θ
2
3
kr
g
k
2
2
k˜yk
2
2
+
2θ
2
4
kr
h
k
2
2
k˜zk
2
2
−
θ
2
1

r
T
f
x

2
k˜xk
4
2
−
θ
2
3

r
T
g
˜y

2
k˜yk
4
2
−
θ
2
4

r
T
h
˜z

2
k˜zk
4
2
−k
T
K
−1
k.
(3.15)
õg|^Sherman-Morrison-Woodbury úª(„©z[15]),²L˜ÐOŽŒ
K
−1
=
1
θ
2
2
I
nm
−
2θ
2
1

I
n
⊗˜y˜y
T

θ
2
2
(θ
2
2
k˜xk
2
2
+2θ
2
1
k˜yk
2
2
)
−
2θ
2
3

˜x˜x
T
⊗I
m

θ
2
2
(2θ
2
3
k˜xk
2
2
+θ
2
2
k˜yk
2
2
)
+
ω

˜x˜x
T
⊗˜y˜y
T

θ
2
2
(2θ
2
3
k˜xk
2
2
+θ
2
2
k˜yk
2
2
)
Ù¥
ω=
(θ
4
2
θ
2
3
+4θ
2
1
θ
4
3
)k˜xk
4
2
+8θ
2
1
θ
2
2
θ
2
3
k˜xk
2
2
k˜yk
2
2
+(4θ
4
1
θ
2
3
+θ
2
1
θ
4
2
)k˜yk
4
2
(θ
2
2
k˜xk
2
2
+2θ
2
1
k˜yk
2
2
)(θ
2
3
k˜xk
4
2
+θ
2
2
k˜xk
2
2
k˜yk
2
2
+θ
2
1
k˜yk
4
2
)
.
²L˜„¡OŽ,Œ±Ñ
k
T
K
−1
k=
4θ
4
1
k˜yk
2
2
k˜xk
2
2
γ
1
kr
f
k
2
2
+
4θ
4
3
k˜xk
2
2
k˜yk
2
2
γ
2
kr
g
k
2
2
−
θ
4
1
k˜yk
2
2
γ
6
k˜xk
4
2
γ
1
γ
3

r
T
f
˜x

2
−
θ
4
3
k˜xk
2
2
γ
7
k˜yk
4
2
γ
2
γ
3

r
T
g
˜y

2
−
2θ
2
1
θ
2
3
γ
3

r
T
f
˜x

r
T
g
˜y

,
Ù¥
γ
6
= 4θ
2
3
k˜xk
4
2
+3θ
2
2
k˜xk
2
2
k˜yk
2
2
+2θ
2
1
k˜yk
4
2
, γ
7
= 2θ
2
3
k˜xk
4
2
+3θ
2
2
k˜xk
2
2
k˜yk
2
2
+4θ
2
1
k˜yk
4
2
.
Ù¥γ
1
,γ
2
Úγ
3
3½n3.1 c¡Ü©½ÂL,òþª‘\(3.15) ¥,íÑ(3.6).y²..
e¡,|^½n3.1 ¥Ü©(•Øη
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z)LˆªíÑ(•Ø
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z)äNLˆª.
½n3.2b(˜x
T
,˜y
T
,˜z
T
)
T
÷v˜x6= 0,˜y6= 0 Ú˜z6= 0•XÚ(1.1) ˜‡OŽ).…
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z)½Âd(3.1)Ú(3.2) ‰Ñ.K
DOI:10.12677/pm.2023.1351551535nØêÆ
0Wå

η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z)

2
=
2θ
2
1
θ
2
2
(µ
1
−2θ
2
1
θ
2
2
)
γ
1
µ
1
kr
f
k
2
2
+
2θ
2
2
θ
2
3
(µ
2
−2θ
2
2
θ
2
3
)
γ
2
µ
2
kr
g
k
2
2
+
2θ
2
4
(µ
3
−2θ
2
4
)
k˜zk
2
2
µ
3
kr
h
k
2
2
+

r
T
f
˜x

2
k
1
+

r
T
g
˜y

2
k
2
+

r
T
h
˜z

2
k
3
+

r
T
f
˜x

r
T
g
˜y

k
4
,
(3.16)
Ù¥
µ
1
= γ
1
λ
2
1
+2θ
2
1
θ
2
2
, µ
2
= γ
2
λ
2
2
+2θ
2
2
θ
2
3
, µ
3
= k˜zk
2
2
λ
2
3
+2θ
2
4
, µ
4
= θ
2
1
k˜xk
2
2
γ
4
+γ
1
γ
3
λ
2
1
+2θ
2
1
θ
2
2
γ
3
,
µ
5
= θ
2
1
θ
2
3
k˜xk
2
2
γ
4
γ
5
+θ
2
3
γ
1
γ
3
γ
5
λ
2
1
+2θ
2
1
θ
2
2
θ
2
3
γ
3
γ
5
−θ
4
1
θ
4
3
k˜xk
2
2
γ
1
γ
2
, µ
6
= k˜zk
2
2
λ
2
3
+θ
2
4
,
Ú
Ω
1
= γ
3
µ
2
µ
4
+k˜yk
2
2
µ
5
, Ω
2
= θ
2
1
θ
4
3
k˜yk
2
2
γ
1
γ
2
γ
3
µ
1
−γ
3
γ
4
µ
2
µ
4
−k˜yk
2
2
γ
4
µ
5
,
Ú
k
1
=
θ
2
1
γ
4
(γ
3
µ
1
µ
4
Ω
1
−4θ
4
1
θ
2
2
k˜xk
2
2
γ
3
Ω
2
−θ
2
1
k˜xk
2
2
γ
4
µ
4
Ω
1
−θ
4
1
k˜xk
4
2
γ
4
Ω
2
)
γ
1
γ
2
3
µ
1
µ
4
Ω
1
−
θ
4
1
θ
4
3
k˜yk
2
2
γ
2
(Ω
1
−k˜yk
2
2
µ
5
−4θ
2
1
θ
2
2
γ
2
3
µ
2
)
γ
2
3
µ
2
Ω
1
−
2θ
4
1
(2θ
2
2
γ
4
µ
4
Ω
1
+2θ
2
1
θ
4
2
γ
3
Ω
2
−θ
2
1
θ
4
3
k˜xk
2
2
k˜yk
2
2
γ
1
γ
2
γ
4
µ
1
µ
4
)
γ
1
γ
3
µ
1
µ
4
Ω
1
,
k
2
=
θ
2
3
γ
5
(γ
3
µ
2
Ω
1
−θ
2
3
k˜yk
2
2
γ
5
Ω
1
+4θ
2
2
θ
2
3
k˜yk
2
2
γ
3
µ
5
+θ
2
3
k˜yk
4
2
γ
5
µ
5
)
γ
2
γ
2
3
µ
2
Ω
1
−
θ
4
1
θ
4
3
k˜xk
2
2
γ
1
(µ
4
Ω
1
+θ
2
1
k˜xk
2
2
Ω
2
−4θ
2
2
θ
2
3
γ
2
3
µ
1
µ
4
)
γ
2
3
µ
1
µ
4
Ω
1
−
2θ
4
3
(2θ
2
2
γ
5
Ω
1
−θ
4
1
θ
2
3
k˜xk
2
2
k˜yk
2
2
γ
1
γ
2
γ
5
µ
2
−2θ
4
2
γ
3
µ
5
)
γ
2
γ
3
µ
2
Ω
1
,
k
3
=
θ
2
4
(3θ
2
4
µ
6
−µ
3
µ
6
−θ
4
4
)
k˜zk
4
2
µ
3
µ
6
,
k
4
=
2θ
2
1
θ
2
3
(Ω
1
+θ
2
1
θ
2
3
k˜xk
2
2
k˜yk
2
2
γ
4
γ
5
+θ
4
1
θ
4
3
k˜xk
2
2
k˜yk
2
2
γ
1
γ
2
)
γ
3
Ω
1
−
2θ
4
1
θ
2
3
k˜xk
2
2
(γ
4
µ
4
Ω
1
+θ
2
1
k˜xk
2
2
γ
4
Ω
2
+2θ
2
1
θ
2
2
γ
3
Ω
2
−2θ
2
2
θ
2
3
γ
2
3
γ
4
µ
1
µ
4
)
γ
2
3
µ
1
µ
4
Ω
1
−
2θ
2
1
θ
4
3
k˜yk
2
2
(γ
5
Ω
1
−2θ
2
1
θ
2
2
γ
2
3
γ
5
µ
2
−2θ
2
2
γ
3
µ
5
−k˜yk
2
2
γ
5
µ
5
)
γ
2
3
µ
2
Ω
1
−
4θ
2
1
θ
2
2
θ
2
3
(θ
2
1
µ
2
Ω
1
−2θ
2
1
θ
2
2
θ
2
3
γ
3
µ
1
µ
2
+θ
2
3
µ
1
Ω
1
)
γ
3
µ
1
µ
2
Ω
1
.
y²Šâη
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z) ½Â(3.2) ÚÜ©(•Øη
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z) 
Lˆª(3.6),Œ±íÑ
DOI:10.12677/pm.2023.1351551536nØêÆ
0Wå

η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z)

2
=min
∆f∈R
n
,∆g∈R
m
,∆h∈R
p
X(∆f,∆g,∆h),
Ù¥
X(∆f,∆g,∆h)
=λ
2
1
k∆fk
2
2
+λ
2
2
k∆gk
2
2
+λ
2
3
k∆hk
2
2
+
2θ
2
1
θ
2
2
γ
1
kr
f
+∆fk
2
2
+
2θ
2
2
θ
2
3
γ
2
kr
g
+∆gk
2
2
+
2θ
2
4
k˜zk
2
2
kr
h
+∆hk
2
2
+
θ
2
1
γ
4
γ
1
γ
3
h
(r
f
+∆f)
T
˜x
i
2
+
θ
2
3
γ
5
γ
2
γ
3
h
(r
g
+∆g)
T
˜y
i
2
−
θ
2
4
k˜zk
4
2
h
(r
h
+∆h)
T
˜z
i
2
+
2θ
2
1
θ
2
3
γ
3
h
(r
f
+∆f)
T
˜x
ih
(r
g
+∆g)
T
˜y
i
.
²L˜ÄOŽ,Œ±Ñ
X(∆f,∆g,∆h) =

η
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z)

2
+




∆f
∆g
∆h




T
Φ




∆f
∆g
∆h




+2




∆f
∆g
∆h




T
q,
…
Φ =




γ
1
λ
2
1
+2θ
2
1
θ
2
2
γ
1
I
n
+
θ
2
1
γ
4
˜x˜x
T
γ
1
γ
3
θ
2
1
θ
2
3
˜x˜y
T
γ
3
0
θ
2
1
θ
2
3
˜y˜x
T
γ
3
γ
2
λ
2
2
+2θ
2
2
θ
2
3
γ
2
I
m
+
θ
2
3
γ
5
˜y˜y
T
γ
2
γ
3
0
00
k˜zk
2
2
λ
2
3
+2θ
2
4
k˜zk
2
2
I
p
−
θ
2
4
˜z˜z
T
k˜zk
4
2




,
Ú
q=









2θ
2
1
θ
2
2
γ
1
r
f
+
θ
2
1
γ
4

r
T
f
˜x

γ
1
γ
3
˜x+
θ
2
1
θ
2
3

r
T
g
˜y

γ
3
˜x
2θ
2
2
θ
2
3
γ
2
r
g
+
θ
2
3
γ
5

r
T
g
˜y

γ
2
γ
3
˜y+
θ
2
1
θ
2
3

r
T
f
˜x

γ
3
˜y
2θ
2
4
k˜zk
2
2
r
h
−
θ
2
4

r
T
h
˜z

k˜zk
4
2
˜z









.
ÏL„¡OŽ,éu?¿š"•þs=

a
T
,b
T
,c
T

T
,Ù¥a∈R
n
,b∈R
m
,Úc∈R
p
,Œ
s
T
Φs=
γ
1
λ
2
1
+2θ
2
1
θ
2
2
γ
1
a
T
a+
θ
2
1
γ
4
γ
1
γ
3
a
T
˜x˜x
T
a+
γ
2
λ
2
2
+2θ
2
2
θ
2
3
γ
2
b
T
b+
θ
2
3
γ
5
γ
2
γ
3
b
T
˜y˜y
T
b
+
k˜zk
2
2
λ
2
3
+2θ
2
4
k˜zk
2
2
c
T
c−
θ
2
4
k˜zk
4
2
c
T
˜z˜z
T
c+
2θ
2
1
θ
2
3
γ
3
a
T
˜x˜y
T
b
=λ
2
1
a
T
a+λ
2
2
b
T
b+
k˜zk
2
2
λ
2
3
+θ
2
4
k˜zk
2
2
c
T
c+
θ
2
1
θ
2
2
k˜yk
2
2
γ
3
k˜xk
2
2
a
T
˜x˜x
T
a+
θ
2
2
θ
2
3
k˜xk
2
2
γ
3
k˜yk
2
2
b
T
˜y˜y
T
b
+
θ
2
1
θ
2
3
γ
3

a
T
˜x+b
T
˜y

2
+
2θ
2
1
θ
2
2
γ
1
k˜xk
2
2
a
T

k˜xk
2
2
I
n
−˜x˜x
T

a
+
2θ
2
2
θ
2
3
γ
2
k˜yk
2
2
b
T

k˜yk
2
2
I
m
−˜y˜y
T

b+
θ
2
4
k˜zk
4
2
c
T

k˜zk
2
2
I
p
−˜z˜z
T

c
>0,
ùL²Φ ´˜‡é¡½Ý.Ïd,X(∆f,∆g,∆h) •Š:•
DOI:10.12677/pm.2023.1351551537nØêÆ
0Wå

∆f
T
,∆g
T
,∆h
T

T
= −Φ
−1
q.
ƒA,

η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z)

2
=

η
(θ
1
,θ
2
,θ
3
,θ
4
)
(˜x,˜y,˜z)

2
−q
T
Φ
−1
q.(3.17)
-
Φ
−1
=



Ψ
11
Ψ
12
0
Ψ
T
12
Ψ
22
0
00Ψ
33



,Ψ
11
∈R
n×n
,Ψ
22
∈R
m×m
,Ψ
33
∈R
p×p
.
²L˜XÐ1C†§k
Ψ
11
=
γ
1
µ
1
I
n
+
θ
2
1
γ
1
Ω
2
µ
1
µ
4
Ω
1
˜x˜x
T
, Ψ
12
= −
θ
2
1
θ
2
3
γ
1
γ
2
γ
3
Ω
1
˜x˜y
T
,
Ψ
22
=
γ
2
µ
2
I
m
−
r
2
µ
5
µ
2
Ω
1
˜y˜y
T
, Ψ
33
=
k˜zk
2
2
µ
3
I
p
+
θ
2
4
µ
3
µ
6
˜z˜z
T
.
²L˜X„¡Ð?“êOŽ,Œ±
q
T
Φ
−1
q=
4θ
4
1
θ
4
2
kr
f
k
2
2
γ
1
µ
1
+
4θ
4
2
θ
4
3
kr
g
k
2
2
γ
2
µ
2
+
4θ
4
4
kr
h
k
2
2
k˜zk
2
2
µ
3
+

r
T
f
˜x

2
l
1
+

r
T
g
˜y

2
l
2
+

r
T
h
˜z

2
l
3
+

r
T
f
˜x

r
T
g
˜y

l
4
,
(3.18)
ùp
l
1
=
θ
4
1
k˜xk
2
2
γ
4
(4θ
2
1
θ
2
2
γ
3
Ω
2
+γ
4
µ
4
Ω
1
+θ
2
1
k˜xk
2
2
γ
4
Ω
2
)
γ
1
γ
2
3
µ
1
µ
4
Ω
1
+
θ
4
1
θ
4
3
k˜yk
2
2
γ
2
(Ω
1
−k˜yk
2
2
µ
5
−4θ
2
1
θ
2
2
γ
2
3
µ
2
)
γ
2
3
µ
2
Ω
1
+
2θ
4
1
(2θ
2
2
γ
4
µ
4
Ω
1
+2θ
2
1
θ
4
2
γ
3
Ω
2
−θ
2
1
θ
4
3
k˜xk
2
2
k˜yk
2
2
γ
1
γ
2
γ
4
µ
1
µ
4
)
γ
1
γ
3
µ
1
µ
4
Ω
1
,
l
2
=
θ
4
1
θ
4
3
k˜xk
2
2
γ
1
(µ
4
Ω
1
+θ
2
1
k˜xk
2
2
Ω
2
−4θ
2
2
θ
2
3
γ
2
3
µ
1
µ
4
)
γ
2
3
µ
1
µ
4
Ω
1
+
θ
4
3
k˜yk
2
2
γ
5
(γ
5
Ω
1
−4θ
2
2
γ
3
µ
5
−k˜yk
2
2
γ
5
µ
5
)
γ
2
γ
2
3
µ
2
Ω
1
+
2θ
4
3
(2θ
2
2
γ
5
Ω
1
−θ
4
1
θ
2
3
k˜xk
2
2
k˜yk
2
2
γ
1
γ
2
γ
5
µ
2
−2θ
4
2
γ
3
µ
5
)
γ
2
γ
3
µ
2
Ω
1
,
l
3
=
θ
4
4
(θ
2
4
−3µ
6
)
k˜zk
4
2
µ
3
µ
6
,
l
4
=
2θ
4
1
θ
2
3
k˜xk
2
2
(γ
4
µ
4
Ω
1
+θ
2
1
k˜xk
2
2
γ
4
Ω
2
+2θ
2
1
θ
2
2
γ
3
Ω
2
−2θ
2
2
θ
2
3
γ
2
3
γ
4
µ
1
µ
4
)
γ
2
3
µ
1
µ
4
Ω
1
+
2θ
2
1
θ
4
3
k˜yk
2
2
(γ
5
Ω
1
−2θ
2
1
θ
2
2
γ
2
3
γ
5
µ
2
−2θ
2
2
γ
3
µ
5
−k˜yk
2
2
γ
5
µ
5
)
γ
2
3
µ
2
Ω
1
−
2θ
4
1
θ
4
3
k˜xk
2
2
k˜yk
2
2
(γ
4
γ
5
+θ
2
1
θ
2
3
γ
1
γ
2
)
γ
3
Ω
1
+
4θ
2
1
θ
2
2
θ
2
3
(θ
2
1
µ
2
Ω
1
−2θ
2
1
θ
2
2
θ
2
3
γ
3
µ
1
µ
2
+θ
2
3
µ
1
Ω
1
)
γ
3
µ
1
µ
2
Ω
1
.
DOI:10.12677/pm.2023.1351551538nØêÆ
0Wå
Ù¥γ
1
,γ
2
,γ
3
,γ
4
Úγ
5
3½n3.1 c¡Ü©½ÂL,µ
1
,µ
2
,µ
3
,µ
4
,µ
5
,µ
6
,Ω
1
ÚΩ
2
3½n3.2 
c¡Ü©½ÂL,•ò(3.18) Ú(3.6) ‘\(3.17) ¥Ï"Lˆª(3.16).
(•Øη
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
(˜x,˜y,˜z) Lˆª(3.16) •,wå5éE,,´lOŽ
Ý5w,Lˆª(3.16) ´N´OŽ,Ï•§•9\!~!¦!ØùÄ$Ž.
4.¦)XÚ(1.1)(˜y=0,˜x6=0Ú˜z6=0)(•Ø¯K
-
˜
t
1
=

˜x
T
,0,˜z
T

T
´XÚ(1.1) OŽ),½Â(•Øη
S
1
(˜x,0,˜z)•
η
S
1
(˜x,0,˜z) =min







∆A,∆B,∆C,
∆D,∆f,∆g,
∆h







∈F
1












k∆Ak
F
kAk
F
k∆Bk
F
kBk
F
k∆Ck
F
kCk
F
k∆Dk
F
kDk
F
k∆fk
2
kfk
2
k∆gk
2
kgk
2
k∆hk
2
khk
2
00












F
,
Ù¥
F
1
=











∆A,∆B,∆C,
∆D,∆f,∆g,
∆h




:




A+∆A(B+∆B)
T
0
B+∆B−(E+∆E)(C+∆C)
T
0C+∆CD+∆D








˜x
0
˜z




=




f+∆f
g+∆g
h+∆h




,
∆A= ∆A
T
,
∆D= ∆D
T







.
(4.1)
eOŽ)
˜
t
1
(•Ø´Åì°ÝÓþ?,KOŽ)
˜
t
1
´˜‡(•-½),ƒAê
ŠŽ{´(•-½(½r -½[14] ).Ïd,‰ Ñ(•Øη
S
1
(˜x,0,˜z)ŒOŽäNL
ˆªòkÏuÿÁ¢Sꊎ{-½5.•d,?˜Ú½Âη
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜x,0,˜z)•
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜x,0,˜z)
=min







∆A,∆B,∆C,
∆D,∆f,∆g,
∆h







∈F
1












θ
1
k∆Ak
F
θ
2
k∆Bk
F
θ
3
k∆Ck
F
θ
4
k∆Dk
F
λ
1
k∆fk
2
λ
2
k∆gk
2
λ
3
k∆hk
2
00












F
,
(4.2)
Ù¥θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
Úλ
3
•ëê.lk
η
S
1
(˜x,0,˜z) = η
(
˜
θ
1
,
˜
θ
2
,
˜
θ
3
,
˜
θ
4
,
˜
λ
1
,
˜
λ
2
,
˜
λ
3
)
1
(˜x,0,˜z).(4.3)
•‰ Ñη
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜x,0,˜z) (•Ø²(Lˆ ª.·‚ÄkïÄÜ©(
•Øη
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z),ٽ•
η
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z) =min
(∆A,∆B,∆C,∆D)∈F
0
1





"
θ
1
k∆Ak
F
θ
2
k∆Bk
F
θ
3
k∆Ck
F
θ
4
k∆Dk
F
#





F
,(4.4)
DOI:10.12677/pm.2023.1351551539nØêÆ
0Wå
Ù¥
F
0
1
=





∆A,∆B,
∆C,∆D
!
:



A+∆A(B+∆B)
T
0
B+∆B−(E+∆E)(C+∆C)
T
0C+∆CD+∆D






˜x
0
˜z



=



f
g
h



,
∆A= ∆A
T
,
∆D= ∆D
T





.
(4.5)
e¡‰Ñη
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z)²(Lˆª.
½n4.1b(˜x
T
,0,˜z
T
)
T
÷v˜x6= 0 Ú˜z6= 0•XÚ(1.1) ˜‡OŽ).K
h
η
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z)
i
2
=
2θ
2
1
k˜xk
2
2
kr
f
k
2
2
+
θ
2
2
θ
2
3
γ
1
kr
g
k
2
2
+
2θ
2
4
k˜zk
2
2
kr
h
k
2
2
−
θ
2
1
k˜xk
4
2

r
T
f
˜x

2
−
θ
2
4
k˜zk
4
2

r
T
h
˜z

2
,
(4.6)
Ù¥
r
f
= f−A˜x, r
g
= g−B˜x−C
T
˜z,r
h
= h−D˜z,γ
1
= θ
2
3
k˜xk
2
2
+θ
2
2
k˜zk
2
2
.
y²d(4.5)•,(∆A,∆B,∆C,∆D) ∈F
0
1
…=∆A,∆B,∆CÚ∆D÷v
∆A˜x= r
f
, ∆B˜x= r
g
−∆C
T
˜z,∆D˜z= r
h
, ∆A= ∆A
T
, ∆D= ∆D
T
.(4.7)
òÚn2.1 A^u(4.7)1‡ª,Œ
∆B=

r
g
−∆C
T
˜z

˜x
†
+Z

I
n
−˜x˜x
†

, Z∈R
m×n
(4.8)
òÚn2.2 A^u(4.7)1˜!n‡ª,Œ
∆A= r
f
˜x
†
+

˜x
†

T
r
T
f

I
n
−˜x˜x
†

+

I
n
−˜x˜x
†

T
1

I
n
−˜x˜x
†

, T
1
∈SR
n×n
(4.9)
∆D= r
h
˜z
†
+

˜z
†

T
r
T
h

I
p
−˜z˜z
†

+

I
p
−˜z˜z
†

T
2

I
p
−˜z˜z
†

, T
2
∈SR
p×p
.(4.10)
é(4.8),(4.9) Ú(4.10) Òü>ÓžFrobenius‰ê,Œ
k∆Ak
2
F
=
kr
f
k
2
2
k˜xk
2
2
+



I
n
−˜x˜x
†

T
1

I
n
−˜x˜x
†



2
F
+



I
n
−˜x˜x
†

r
f


2
2
k˜xk
2
2
=
2kr
f
k
2
2
k˜xk
2
2
−

r
T
f
˜x

2
k˜xk
4
2
+



I
n
−˜x˜x
†

T
1

I
n
−˜x˜x
†



2
F
,
(4.11)
k∆Bk
2
F
=


r
g
−∆C
T
˜z


2
2
k˜xk
2
2
+


Z

I
n
−˜x˜x
†



2
F
,
(4.12)
Ú
k∆Dk
2
F
=
kr
h
k
2
2
k˜zk
2
2
+



I
p
−˜z˜z
†

T
2

I
p
−˜z˜z
†



2
F
+



I
p
−˜z˜z
†

r
h


2
2
k˜zk
2
2
=
2kr
h
k
2
2
k˜zk
2
2
−

r
T
h
˜z

2
k˜zk
4
2
+



I
p
−˜z˜z
†

T
2

I
p
−˜z˜z
†



2
F
,
(4.13)
DOI:10.12677/pm.2023.1351551540nØêÆ
0Wå
Šâη
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z)½Â(4.4),±9Lˆª(4.11),(4.12) Ú(4.13)Œ±Ñ
h
η
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z)
i
2
=min
∆C∈R
p×m
,Z∈R
m×n
T
1
∈SR
n×n
,T
2
∈SR
p×p
n
θ
2
1
k∆Ak
2
F
+θ
2
2
k∆Bk
2
F
+θ
2
3
k∆Ck
2
F
+θ
2
4
k∆Dk
2
F
o
=
2θ
2
1
kr
f
k
2
2
k˜xk
2
2
+
2θ
2
4
kr
h
k
2
2
k˜zk
2
2
−
θ
2
1

r
T
f
˜x

2
k˜xk
4
2
−
θ
2
4

r
T
h
˜z

2
k˜zk
4
2
+min
∆C∈R
p×m
p(∆C),
(4.14)
Ù¥
p(∆C) =
θ
2
2


r
g
−∆C
T
˜z


2
2
k˜xk
2
2
+θ
2
3
k∆Ck
2
F
=
θ
2
2
kr
g
k
2
2
k˜xk
2
2
−
2θ
2
2

˜z
T
∆Cr
g

k˜xk
2
2
+
θ
2
2
k˜z
T
∆Ck
2
2
k˜xk
2
2
+θ
2
3
k∆Ck
2
F
.
Pt
1
= vec(∆C) ∈R
mp
,|^KroneckerÈ5Ÿ(2.1)Ú(2.2),þ¡ªfŒ±?˜Úz•
p(∆C) =
θ
2
2
kr
g
k
2
2
k˜xk
2
2
+θ
2
3
t
T
1
I
mp
t
1
−
2θ
2
2

r
T
g
⊗˜z
T

t
1
k˜xk
2
2
+
θ
2
2
t
T
1
(I
m
⊗˜z)

I
m
⊗˜z
T

t
1
k˜xk
2
2
òþ¡ª‘\(4.14) ¥,¿-E¦^(2.2),Œ±
h
η
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,˜y,˜z)
i
2
=
2θ
2
1
kr
f
k
2
2
k˜xk
2
2
+
θ
2
2
kr
g
k
2
2
k˜xk
2
2
+
2θ
2
4
kr
h
k
2
2
k˜zk
2
2
−
θ
2
1

r
T
f
˜x

2
k˜xk
4
2
−
θ
2
4

r
T
h
˜z

2
k˜zk
4
2
+min
t
1
∈R
mp
H(t
1
),
ùpH(t
1
) = t
T
1
K
1
t
1
−2k
T
1
t
1
,Ù¥
K
1
= θ
2
3
I
mp
+
θ
2
2
(I
m
⊗˜z)

I
m
⊗˜z
T

k˜xk
2
2
,k
1
=
θ
2
2
(r
g
⊗˜z)
k˜xk
2
2
,
w,K
1
´˜‡é¡½Ý.lt
1
= K
−1
1
k
1
ž,H(t
1
)U•Š.ƒA,
h
η
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,˜y,˜z)
i
2
=
2θ
2
1
kr
f
k
2
2
k˜xk
2
2
+
θ
2
2
kr
g
k
2
2
k˜xk
2
2
+
2θ
2
4
kr
h
k
2
2
k˜zk
2
2
−
θ
2
1

r
T
f
˜x

2
k˜xk
4
2
−
θ
2
4

r
T
h
˜z

2
k˜zk
4
2
−k
T
1
K
−1
1
k
1
.
(4.15)
|^Sherman-Morrison-Woodbury úª(„©z[15]),Œ
K
−1
1
=
1
θ
2
3
I
mp
−
θ
2
2

I
m
⊗˜z˜z
T

θ
2
3
(θ
2
3
k˜xk
2
2
+θ
2
2
k˜zk
2
2
)
²L˜ÐOŽ,Œ±Ñ
k
T
1
K
−1
1
k
1
=
θ
4
2
k˜zk
2
2
k˜xk
2
2
γ
1
kr
g
k
2
2
,
Ù¥γ
1
= θ
2
3
k˜xk
2
2
+θ
2
2
k˜zk
2
2
.òþª‘\(4.15) ¥,íÑ(4.6).y²..
DOI:10.12677/pm.2023.1351551541nØêÆ
0Wå
e¡,|^½n4.1 ¥Ü©(•Øη
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z)LˆªíÑ(•Ø
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜x,0,˜z)äNLˆª.
½n4.2b(˜x
T
,0,˜z
T
)
T
÷v˜x6= 0 Ú˜z6= 0•XÚ(1.1) ˜‡OŽ).…
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜x,0,˜z)½Âd(4.1) Ú(4.2)‰Ñ.K
h
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜x,0,˜z)
i
2
=
2θ
2
1
(µ
1
−2θ
2
1
)
k˜xk
2
2
µ
1
kr
f
k
2
2
+
θ
2
2
θ
2
3
(µ
2
−θ
2
2
θ
2
3
)
γ
1
µ
2
kr
g
k
2
2
+
2θ
2
4
(µ
3
−2θ
2
4
)
k˜zk
2
2
µ
3
kr
h
k
2
2
+
θ
2
1
(3θ
2
1
µ
4
−θ
4
1
−µ
1
µ
4
)
k˜xk
4
2
µ
1
µ
4

r
T
f
˜x

2
+
θ
2
4
(3θ
2
4
µ
5
−θ
4
4
−µ
3
µ
5
)
k˜zk
4
2
µ
3
µ
5

r
T
h
˜z

2
,
(4.16)
Ù¥
µ
1
= k˜xk
2
2
λ
2
1
+2θ
2
1
, µ
2
= γ
1
λ
2
2
+θ
2
2
θ
2
3
, µ
3
= k˜zk
2
2
λ
2
3
+2θ
2
4
,
µ
4
= k˜xk
2
2
λ
2
1
+θ
2
1
, µ
5
= k˜zk
2
2
λ
2
3
+θ
2
4
.
y²Šâη
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜x,0,˜z)½Â(4.2) ÚÜ©(•Øη
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z)Lˆ
ª(4.6),Œ±íÑ
h
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜x,0,˜z)
i
2
=min
∆f∈R
n
,∆g∈R
m
,∆h∈R
p
X
1
(∆f,∆g,∆h),
Ù¥
X
1
(∆f,∆g,∆h)
=λ
2
1
k∆fk
2
2
+λ
2
2
k∆gk
2
2
+λ
2
3
k∆hk
2
2
+
2θ
2
1
k˜xk
2
2
kr
f
+∆fk
2
2
+
θ
2
2
θ
2
3
γ
1
kr
g
+∆gk
2
2
+
2θ
2
4
k˜zk
2
2
kr
h
+∆hk
2
2
−
θ
2
1
k˜xk
4
2
h
(r
f
+∆f)
T
˜x
i
2
−
θ
2
4
k˜zk
4
2
h
(r
h
+∆h)
T
˜z
i
2
.
²L˜ÄOŽ,Œ±Ñ
X
1
(∆f,∆g,∆h) =
h
η
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z)
i
2
+




∆f
∆g
∆h




T
Φ
1




∆f
∆g
∆h




+2




∆f
∆g
∆h




T
q
1
,
…
Φ
1
=




k˜xk
2
2
λ
2
1
+2θ
2
1
k˜xk
2
2
I
n
−
θ
2
1
˜x˜x
T
k˜xk
4
2
00
0
γ
1
λ
2
2
+θ
2
2
θ
2
3
γ
1
I
m
0
00
k˜zk
2
2
λ
2
3
+2θ
2
4
k˜zk
2
2
I
p
−
θ
2
4
˜z˜z
T
k˜zk
4
2




,
Ú
DOI:10.12677/pm.2023.1351551542nØêÆ
0Wå
q
1
=











2θ
2
1
k˜xk
2
2
r
f
−
θ
2
1

r
T
f
˜x

k˜xk
4
2
˜x
θ
2
2
θ
2
3
γ
1
r
g
2θ
2
4
k˜zk
2
2
r
h
−
θ
2
4

r
T
h
˜z

k˜zk
4
2
˜z











.
N´y²Φ
1
´˜‡é¡½Ý.Ïd,X
1
(∆f,∆g,∆h) •Š:•

∆f
T
,∆g
T
,∆h
T

T
= −Φ
−1
1
q
1
.
ƒA,
h
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
1
(˜x,0,˜z)
i
2
=
h
η
(θ
1
,θ
2
,θ
3
,θ
4
)
1
(˜x,0,˜z)
i
2
−q
T
1
Φ
−1
1
q
1
.(4.17)
Ù¥
Φ
−1
1
=




k˜xk
2
2
µ
1
I
n
+
θ
2
1
µ
1
µ
4
˜x˜x
T
00
0
γ
1
µ
2
I
m
0
00
k˜zk
2
2
µ
3
I
p
+
θ
2
4
µ
3
µ
5
˜z˜z
T




.
²L˜XÐ?“êOŽ,Œ±
q
T
1
Φ
−1
1
q
1
=
4θ
4
1
kr
f
k
2
2
k˜xk
2
2
µ
1
+
θ
4
2
θ
4
3
kr
g
k
2
2
γ
1
µ
2
+
4θ
4
4
kr
h
k
2
2
k˜zk
2
2
µ
3
+
θ
4
1
(θ
2
1
−3µ
4
)
k˜xk
4
2
µ
1
µ
4

r
T
f
˜x

2
+
θ
4
4
(θ
2
4
−3µ
5
)
k˜zk
4
2
µ
3
µ
5

r
T
h
˜z

2
.
(4.18)
Ù¥γ
1
3½n4.1c¡Ü©½ÂL,µ
1
,µ
2
,µ
3
,µ
4
Úµ
5
3½n4.2c¡Ü©½ÂL,•ò
(4.18)Ú(4.6)‘\(4.17) ¥Ï"Lˆª(4.16).
½n4.3XJ˜x= 0,˜y6= 0 Ú˜z6= 0,Œ±aqþ¡y²‰Ñ
h
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
2
(0,˜y,˜z)
i
2
=
θ
2
1
(µ
1
−θ
2
1
)
k˜yk
2
2
µ
1
kr
f
k
2
2
+
2θ
2
2
θ
2
3
(µ
2
−2θ
2
2
θ
2
3
)
γ
1
µ
2
kr
g
k
2
2
+
2θ
2
2
θ
2
4
(µ
3
−2θ
2
2
θ
2
4
)
γ
2
µ
3
kr
h
k
2
2
+

r
T
g
˜y

2
k
1
+

r
T
h
˜z

2
k
2
+

r
T
g
˜y

r
T
h
˜z

k
3
,
(4.19)
Ù¥θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
Úλ
3
•ëê.Ù¥
r
f
= f−B
T
˜y, r
g
= −g−E˜y+C
T
˜z,r
h
= h−C˜y−D˜z,
γ
1
= θ
2
2
k˜yk
2
2
+2θ
2
3
k˜zk
2
2
, γ
2
= 2θ
2
4
k˜yk
2
2
+θ
2
2
k˜zk
2
2
, γ
3
= θ
2
4
k˜yk
4
2
+θ
2
2
k˜yk
2
2
k˜zk
2
2
+θ
2
3
k˜zk
4
2
,
γ
4
= 2θ
2
3
θ
2
4
k˜zk
2
2
−θ
2
2
θ
2
4
k˜yk
2
2
−θ
4
2
k˜zk
2
2
, γ
5
= 2θ
2
3
θ
2
4
k˜yk
2
2
−θ
2
2
θ
2
3
k˜zk
2
2
−θ
4
2
k˜yk
2
2
,
DOI:10.12677/pm.2023.1351551543nØêÆ
0Wå
Ú
µ
1
= k˜yk
2
2
λ
2
1
+θ
2
1
, µ
2
= γ
1
λ
2
2
+2θ
2
2
θ
2
3
, µ
3
= γ
2
λ
2
3
+2θ
2
2
θ
2
4
, µ
4
= γ
1
γ
3
λ
2
2
+2θ
2
2
θ
2
3
γ
3
+θ
2
3
γ
4
k˜yk
2
2
,
µ
5
= θ
2
4
γ
1
γ
3
γ
5
λ
2
2
+2θ
2
2
θ
2
3
θ
2
4
γ
3
γ
5
+θ
2
3
θ
2
4
γ
4
γ
5
k˜yk
2
2
−θ
4
3
θ
4
4
k˜yk
2
2
γ
1
γ
2
,
Ω
1
= γ
3
µ
3
µ
4
+k˜zk
2
2
µ
5
, Ω
2
= θ
2
3
θ
4
4
k˜zk
2
2
γ
1
γ
2
γ
3
µ
2
−γ
3
γ
4
µ
3
µ
4
−k˜zk
2
2
γ
4
µ
5
,
Ú
k
1
=
θ
2
3
γ
4
(µ
2
Ω
1
−2θ
2
2
θ
2
3
Ω
1
+2θ
4
3
θ
4
4
k˜yk
2
2
k˜zk
2
2
γ
1
γ
2
µ
2
)
γ
1
γ
3
µ
2
Ω
1
−
θ
4
3
(2θ
2
2
γ
3
+k˜yk
2
2
γ
4
)(2θ
2
2
θ
2
3
γ
3
Ω
2
+γ
4
µ
4
Ω
1
+θ
2
3
k˜yk
2
2
γ
4
Ω
2
)
γ
1
γ
2
3
µ
2
µ
4
Ω
1
−
θ
4
3
θ
4
4
k˜zk
2
2
γ
2
(Ω
1
−k˜zk
2
2
µ
5
−4θ
2
2
θ
2
3
γ
2
3
µ
3
)
γ
2
3
µ
3
Ω
1
,
k
2
=
θ
2
4
γ
5
(µ
3
Ω
1
−2θ
2
2
θ
2
4
Ω
1
+2θ
4
3
θ
4
4
k˜yk
2
2
k˜zk
2
2
γ
1
γ
2
µ
3
)
γ
2
γ
3
µ
3
Ω
1
−
θ
4
4
(2θ
2
2
γ
3
+k˜zk
2
2
γ
5
)(γ
5
Ω
1
−2θ
2
2
γ
3
µ
5
−k˜zk
2
2
γ
5
µ
5
)
γ
2
γ
2
3
µ
3
Ω
1
−
θ
4
3
θ
4
4
k˜yk
2
2
γ
1
(µ
4
Ω
1
+θ
2
3
k˜yk
2
2
Ω
2
−4θ
2
2
θ
2
4
γ
2
3
µ
2
µ
4
)
γ
2
3
µ
2
µ
4
Ω
1
,
k
3
=
θ
2
3
θ
4
4
(2γ
3
µ
3
Ω
1
−k˜zk
2
2
γ
5
Ω
1
+2θ
2
2
k˜zk
2
2
γ
3
µ
5
+k˜zk
4
2
γ
5
µ
5
)
γ
2
3
µ
3
Ω
1
−
θ
4
3
θ
2
4
(2θ
2
2
γ
3
+k˜yk
2
2
γ
4
)(µ
4
Ω
1
+θ
2
3
k˜yk
2
2
Ω
2
)
γ
2
3
µ
2
µ
4
Ω
1
−
θ
2
3
θ
4
4
(2θ
2
2
γ
3
+k˜zk
2
2
γ
5
)(Ω
1
−k˜zk
2
2
µ
5
−4θ
2
2
θ
2
3
γ
2
3
µ
3
−2θ
2
3
k˜yk
2
2
γ
3
γ
4
µ
3
)
γ
2
3
µ
3
Ω
1
−
2θ
2
3
θ
2
4
(θ
2
2
θ
2
3
µ
3
Ω
1
−θ
4
3
θ
4
4
k˜yk
2
2
k˜zk
2
2
γ
1
γ
2
µ
2
µ
3
+θ
2
2
θ
2
4
µ
2
Ω
1
)
γ
3
µ
2
µ
3
Ω
1
−
θ
4
3
θ
2
4
k˜yk
2
2
(2θ
2
2
θ
2
3
γ
3
Ω
2
+γ
4
µ
4
Ω
1
+θ
2
3
k˜yk
2
2
γ
4
Ω
2
)
γ
2
3
µ
2
µ
4
Ω
1
½n4.4XJ˜z= 0,˜x6= 0 Ú˜y6= 0,Œ±aqþ¡y²‰Ñ
h
η
(θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
,λ
3
)
3
(˜x,˜y,0)
i
2
=
2θ
2
1
θ
2
2
(µ
1
−2θ
2
1
θ
2
2
)
γ
1
µ
1
kr
f
k
2
2
+
2θ
2
2
θ
2
3
(µ
2
−2θ
2
2
θ
2
3
)
γ
2
µ
2
kr
g
k
2
2
+
θ
2
3
(µ
3
−θ
2
3
)
k˜yk
2
2
µ
3
kr
h
k
2
2
+

r
T
f
˜x

2
k
1
+

r
T
g
˜y

2
k
2
+

r
T
f
˜x

r
T
g
˜y

k
4
,
(4.20)
DOI:10.12677/pm.2023.1351551544nØêÆ
0Wå
Ù¥θ
1
,θ
2
,θ
3
,θ
4
,λ
1
,λ
2
Úλ
3
•ëê.Ù¥
r
f
= f−A˜x−B
T
˜y, r
g
= −g+B˜x−E˜y, r
h
= h−C˜y,µ
3
= k˜yk
2
2
λ
2
3
+θ
2
3
.
¿…γ
1
,γ
2
,γ
3
,γ
4
,γ
5
,µ
1
,µ
2
,µ
4
,µ
5
,Ω
1
,Ω
2
,k
1
,k
2
,k
4
†1nÜ©(ÝCØ6Ä)¤½ÂƒÓ.
5.ꊢ
!ò‰Ñ˜‡êŠ~f5 '13 !¥íÑ(•Øη
S
(˜x,˜y,˜z) ÚƒAÃ(•
Øη(
˜
t).ꊢ3MATLABR2015b¥?1,Åì°Ý•2.2204×10
−16
.
•Ä‚5XÚ(1.1) ÷v
A= M
1
PM
1
,D= M
2
PM
2
B=






000100
001000
010000
10
−3
00000






,C=




1−210
−2−100
1000




Ú
E= I
4
,f=

10
8
,10,0,0,0,0

T
,g=

10
8
,1,0,0

T
,h=

10
−8
,0,0

T
Ù¥
M
1
= diag(1,5,10,50,100,10000),M
2
= diag(1,5,10),
P= (p
ij
),p
ij
=
(i+j−2)!
(i−1)!(j−1)!
ù‡¯K´d©[8]¥Example5.2?U5.éw,XêÝ´šÛÉ.¦^ÀÌpd
ž{Œ±˜‡OŽ)
˜
t=

˜x
T
,˜y
T
,˜z
T

T
,Ù¥
˜x=











4.0418×10
8
−1.6445×10
8
1.0030×10
8
−1.4400×10
7
2.8125×10
6
−4.6236×10
3











,˜y=






7.3927×10
5
−3.4302×10
7
−8.8214×10
7
4.0418×10
5






Ú˜z=




7.6232×10
7
−1.7857×10
7
3.1926×10
6




.
d(1.2) ,Ã(•Ø
η(
˜
t) = 8.8414×10
−22
.
d(3.3) Ú(3.16),(•Ø
η
S
(˜x,˜y,˜z) = 1.4127×10
−8
.
DOI:10.12677/pm.2023.1351551545nØêÆ
0Wå
6.o(
©|^©[10,16]¥E|ÚKroneckerÈ5Ÿ, Äkò3×3¬Q:¯KCq)(•
Øù˜Ý`z¯K=z•½g.•НK§,| ^Sherman-Morrison-Woodbury
úª,•ª¼(•ØŒOŽäNLˆª.•·‚‰Ñ˜‡êŠ¢, ±y²·‚
(JŒ±éN´/^5ÿÁ¢Sꊎ{-½5.
Ä7‘8
[‹Ž#Ñ“cÄ7(20JR5RA540)"
ë•©z
[1]Bunch, J.R.(1987) TheWeakand StrongStabilityof Algorithmsin NumericalLinear Algebra.
LinearAlgebraandItsApplications,88-89,49-66.
https://doi.org/10.1016/0024-3795(87)90102-9
[2]Higham,N.J.(2002)AccuracyandStabilityofNumericalAlgorithms.2ndEdition,SIAM,
Philadelphia.https://doi.org/10.1137/1.9780898718027
[3]Rhebergen,S.,Wells,G.N.,Wathen,A.J.andKatz,R.F.(2015)Three-FieldBlockPre-
conditionersforModelsofCoupledMagma/MantleDynamics.SIAMJournalonScientific
Computing,37,A2270-A2294.https://doi.org/10.1137/14099718X
[4]Castelletto,N.,White,J.A.andFerronato,M.(2016)ScalableAlgorithmsforThree-Field
MixedFiniteElementCoupledPoromechanics.JournalofComputationalPhysics,327,894-
918.https://doi.org/10.1016/j.jcp.2016.09.063
[5]Frigo,M.,Castelletto, N.,Ferronato, M.andWhite,J.A.(2021)EfficientSolversforHybridized
Three-FieldMixedFinite Element CoupledPoromechanics.ComputersandMathematicswith
Applications,91,36-52.https://doi.org/10.1016/j.camwa.2020.07.010
[6]Chen,X.S.,Li,W.,Chen,X.J. and Liu, J.(2012) StructuredBackward Errorsfor Generalized
SaddlePointSystems.LinearAlgebraandItsApplications,436,3109-3119.
https://doi.org/10.1016/j.laa.2011.10.012
[7]Meng,L.S.,He,Y.W.andMiao,S.X.(2020)StructuredBackwardErrorsforTwoKindsof
GeneralizedSaddlePointSystems.LinearandMultilinearAlgebra,70,1345-1355.
https://doi.org/10.1080/03081087.2020.1760193
[8]Sun,J.G.(1999)StructuredBackwardErrorsforKKTSystems.LinearAlgebraandItsAp-
plications,288,75-88.https://doi.org/10.1016/S0024-3795(98)10184-2
DOI:10.12677/pm.2023.1351551546nØêÆ
0Wå
[9]Xiang,H.andWei,Y.M.(2007)OnNormwiseStructuredBackwardErrorsforSaddlePoint
Systems.SIAMJournalonMatrixAnalysisandApplications,29,838-849.
https://doi.org/10.1137/060663684
[10]Zheng, B.and Lv,P. (2020) Structured Backward Error Analysis forGeneralized Saddle Point
Problems.AdvancesinComputationalMathematics,46,ArticleNo.34.
https://doi.org/10.1007/s10444-020-09787-x
[11]Sun, J.G. (1996) Optimal Backward PerturbationBounds for Linear Systemsand Linear Least
SquaresProblems.Tech.Rep.,UMINF96.15,DepartmentofComputingScience,UmeaUni-
versity,Umea.
[12]Horn,R.A. andJohnson,C.R. (1991)Topics inMatrixAnalysis. Cambridge UniversityPress,
Cambridge.https://doi.org/10.1017/CBO9780511840371
[13]Sun,J.G.(2001)MatrixPerturbationAnalysis.2ndEdition,SciencePress,Beijing.
[14]Boffi,D.,Brezzi,F.andFortin,M.(2013)MixedFiniteElementMethodsandApplications.
In:SpringerSeriesinComputationalMathematics,Springer,NewYork.
https://doi.org/10.1007/978-3-642-36519-5
[15]Golub, G.H.andVanLoan,C.F.(2013)MatrixComputations.4thEdition,TheJohnsHopkins
UniversityPress,Baltimore.
[16]Lv,P.andZheng,B.(2022)StructuredBackwardErrorAnalysisforaClassofBlockThree-
by-ThreeSaddlePointProblems.NumericalAlgorithms,90,59-78.
https://doi.org/10.1007/s11075-021-01179-6
DOI:10.12677/pm.2023.1351551547nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.