设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(6),2643-2649
PublishedOnlineJune2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.126266
˜«#.·ÜXÚ
ŸŸŸ777œœœ
úô“‰ŒÆ§êÆ‰ÆÆ§úô7u
ÂvFϵ2023c55F¶¹^Fϵ2023c528F¶uÙFϵ2023c66F
Á‡
ó ÀX ÚŠ•˜ a· ,X Ú§Œ±†Ü6ÄXÚƒ(ܧïÄÜ6ÀJ óÀ A X Ú"d u
ÄåXÚdóÀAÚÜ6$Ž|¤§Ïd§‚´•˜„Ú•E,·ÜXÚ"$^ÝŒÜ
þ È•{§òÜ6¼ê=†• d “ ê/ª§¦ùaóÀXÚïĤ•ŒU"©Ì‡$
^ÝŒÜþÈ•{òóÀXÚ†Ü6ÄXÚ(Ü"
'…c
óÀXÚ§Ü6ÄXÚ§ÝŒÜþȧ-½5
ANovelHybridSystem
JinfeiWei
SchoolofMathematicalSciences,ZhejiangNormalUniversity, Jinhua Zhejiang
Received:May5
th
,2023;accepted:May28
th
,2023;published:Jun.6
th
,2023
Abstract
Impulsivesystems,asatypeofhybridsystem,canbecombinedwithlogicaldynamic
systemstostudysystemswith logicselectiveimpulsiveeffects.Duetothefactthat the
powersystemconsistsofimpulsiveeffectsandlogicaloperations,theyaremoregeneral
andcomplexhybridsystems.Byusingthesemi-tensorproductmethodofmatrices,
©ÙÚ^:Ÿ7œ.˜«#.·ÜXÚ[J].A^êÆ?Ð,2023,12(6):2643-2649.
DOI:10.12677/aam.2023.126266
Ÿ7œ
the logicalfunction istransformedinto an equivalent algebraicform, making thestudy
ofsuchimpulsivesystemspossible.Thisarticlemainlyusesthesemitensorproduct
methodofmatricestocombineimpulsivesystemswithlogicaldynamicsystems.
Keywords
ImpulsiveSystem,LogicalDynamicSystem,TheSemiTensorProductofMatrices,
Stability
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3²;‡©•§nØ¥,·‚²~bÔN$ÄG´‘XžmCzëYCz.3
y¢-.¥,Nõ¯ÔuÐCzL§~~3á6žmSÉZ6,¦XÚG;â,UC,
duCzžm š~á,ÙâC½aL§ Œ±À•3,ž•]mu)[1].”ù˜«É]ž
Z6üCL§[2]3ˆ‡+•Ñ•3,·‚rù«y–¡ƒ•óÀy–,äkóÀy–ùXÚ
ØUü‚DÚëYXÚ½ü‚DÚlÑXÚÒU)û[3].•ïž¿©•ÄóÀAé
XÚK•,·‚˜„/ÏóÀ‡©•§5•xXÚG3üCL§¥Cz5Æ[4].ùa^óÀ
‡©•§£ãXÚ~~¡ ŠóÀÄXÚ½öóÀXÚ[5,6],A^uNõ+•,X²L››X
Ú!^››XÚ.ÓžÜ6ÄXÚ´ÆS XÚ)ÔÆ.§d˜|lÑÜ6Cþ|¤,z‡Ü6
CþdÙƒAÜ6¼êOŽ.‡XÚÜ6Gdþ˜gz‡CþÜ6G•#[7].3CA
c¥kŒþ©zòóÀXÚÚÜ6ÄXÚƒ(Ü,òÜ6ÄXÚGŠ•óÀÀJ,
©·‚•ÄòÜ6ÄXÚÑÑŠ•óÀ&Ò=†,^ÝŒÜþÈ•{òü‡XÚÜ¿,
/¤˜‡#.·ÜXÚ.
2.ý•£
·‚•Äù˜‡XÚ









˙x(t) = f(x(t)),t6= t
k
,
x(t) = I
η(t)
(x(t
−
)),k∈Z
+
,
x(0) = x
0
,
(1)
DOI:10.12677/aam.2023.1262662644A^êÆ?Ð
Ÿ7œ
Ù¥x(t)∈R
n
L«XÚG.·‚bXÚ(1))´mëY.f:R
n
→R
n
,¿…é
u¤kt∈R
0
+
Ñkf(0)=0.bt≥t
0
ž¼êf÷vXÚ(1))Û•35Ú•
˜5˜·^‡.n→∞žóÀS{t
k
}
k∈Z
+
÷v0≤t
0
<t
1
<···<t
k
→+∞.
η(t) : R
+
→D
N
:= {0,1,...,N−1}´Ü6ÄXÚÑÑ:



σ(t
k+1
) = g(σ(t
k
))
η(t
k
) = h(σ(t
k
))
(2)
¿…I
η
(t) : R
n
→R
n
´˜‡ëY¼ê÷vI
η
(t) = 0x= 0.
½Â1.A= (a
ij
) ∈R
m×n
ÚB= (b
ij
) ∈R
p×q
.K
A⊗B=




a
11
Ba
12
B···a
1n
B
.
.
.
.
.
.
.
.
.
a
m1
B a
m2
B ···a
mn
B




¡•ÝAÚBÜþÈ.
½Â2.A∈R
m×n
ÚB∈R
p×q
,K
AnB= (A⊗I
α/n
)(B⊗I
α/p
)
¡•ÝA,BŒÜþÈ,Ù¥α•n†p•úê.
éu?¿•þx∈R
n
,·‚½Âx
k
= xnxn···nx
|{z}
k
.3dÄ:þ,˜‡Ü6¼êh: D
l
2
→D
2
Œ±=z•˜‡N:∆
2
l
→∆
2
,Ù¥∆
2
= {δ
1
2
,δ
2
2
}.
Ún1.h(q
1
,...,q
l
)•˜‡Ü6¼ê,3•þ/ªe,h:∆
2
l
→∆
2
,•3•˜(Ý
H∈L
2×2
l
,¦
h(q
1
,...,q
l
) = Hq
1
q
2
···q
l
:= Hn
l
i=1
q
i
.
½Â3.¼êW: [t
0
−h,∞)×R
n
→R
0
+
áuν
0
,XJ
1)W3[t
n−1
,t
n
)×R
n
,n∈Z
+
þëY¿…lim
(t,u)→(t
−
n
,v)
W(t,u) = W(t
−
n
,v)•3;
2)W(t,x) éx´÷vÛÜLipschitz¿…W(t,0) ≡0.
Ún2.XÚY©O•n‘Úm‘•þ.Kk
W
[n,m]
XY= YX.
Ù¥W
[n,m]
= [I
m
⊗δ
1
n
I
m
⊗δ
2
n
...I
m
⊗δ
n
n
] ´†Ý,
Ún3.éu?¿x∈R
n
,y∈R
n
Új∈Z
≥2
,Kk
x
j
y
j
= [
j−1
Y
s=1
W
[n
j−s
m
j−s
,n]
](xy)
j
DOI:10.12677/aam.2023.1262662645A^êÆ?Ð
Ÿ7œ
Ún4.éu?¿x∈∆
n
,kx
2
= M
r,n
x,Ù¥M
r,n
= Diag{δ
1
n
,δ
2
n
,...δ
n
n
}´ü˜Ý.
Ún5.éu?¿X∈∆
n
ÚY∈∆
n
,kD
[n,m]
XY= X,Ù¥D
[n,m]
:= (1
T
m
⊗I
n
)W
[n,m]
´–Ý.
Ún6.bA
j
,j= 1,2,...,m´˜XÝ§@oé?¿x∈R
n
,ω∈∆
m
k
[A
1
x,...,A
m
x]nω= [A
1
,...,A
m
]nωnx.
Ún7.é?¿x∈R
n
,ω∈∆
m
,kkωnxk= kxnωk= kxk.
3.̇SN
Äk·‚½Â
G(x(t
−
k
)) := [I
N−1
(x(t
−
k
))I
N−2
(x(t
−
k
))...I
0
(x(t
−
k
))].
ÏLÚn,…é?¿η(t),kI
η(t)
= 0,Kk
I
η(t)
(x) =
∞
X
p=1
1
p!
D
p
I
η(t)
(0)nx
p
.
Ïd,N´
G(x(t
−
k
)) :=
∞
X
p=1
1
p!
[D
p
I
N−1
(0)n(x(t
−
k
))
p
...D
p
I
0
(0)n(x(t
−
k
))
p
].
·‚½Âσ(t
k
)Úη(t
k
)•þ/ª•ω(t
k
) = δ
m−σ
m
Úλ(t
k
) = δ
N−η(t
k
)
N
.ÏLÚn,Œ±
G(x(t
−
k
))nλ(t
k
) =
∞
X
p=1
1
p!
[D
p
I
N−1
(0)n(x(t
−
k
))
p
...D
p
I
0
(0)n(x(t
−
k
))
p
]nλ(t
k
)
=
∞
X
p=1
1
p!
D
p
G(0)nλ(t
k
)nx(t
−
k
)
p
(3)
Ù¥D
p
G(0) = [D
p
I
N−1
(0)...D
p
I
0
(0)].ÏdXÚ(1)ÚXÚ(2)Œ±d/Lã•











˙x(t) = f(x(t)),t6= t
k
,
x(t) =
P
∞
p=1
1
p!
D
p
G(0)nλ(t
k
)nx(t
−
k
)
p
,k∈Z
+
,
x(0) = x
0
,
(4)
Ú





ω(t
k+1
) = L
g
(ω(t
k
))
λ(t
k
) = L
h
(ω(t
k
)).
(5)
DOI:10.12677/aam.2023.1262662646A^êÆ?Ð
Ÿ7œ
½Â
ξ(t) :=



ω(t
k−1
)nx(t),t∈(t
k−1
,t
k
),
ω(t
k
)nx(t
k
),t= t
k
.
(6)
Ïd,t6= t
k
,
˙
ξ(t) = f(ξ(t)).t= t
k
,
ξ(t
k
) =ω(t
k
)nx(t
k
)
=L
g
ω(t
k−1
)n
∞
X
p=1
1
p!
D
p
G(0)nλ(t
k
)n(x(t
−
k
))
p
=
∞
X
p=1
1
p!
L
g
ω(t
k−1
)D
p
G(0)nλ(t
k
)n(x(t
−
k
))
p
=
∞
X
p=1
1
p!
L
g
ω(t
k−1
)D
p
G(0)nL
h
L
g
ω(t
k−1
)n(x(t
k
))
p
=
∞
X
p=1
1
p!
L
g
W
[N
2
n
p
,m]
D
p
G(0)nL
h
L
g
(ω(t
k−1
))
2
n(x(t
k
))
p
=
∞
X
p=1
1
p!
L
g
W
[N
2
n
p
,m]
D
p
G(0)nL
h
L
g
M
[r,m]
ω(t
k−1
)n(x(t
k
))
p
(7)
éup= 1,kω(t
k−1
)n(x(t
k
))
p
= ω(t
k−1
)n(x(t
−
k
)) = ξ(t
−
k
).éup≥2,k
ω(t
k−1
)n(x(t
k
))
p
=D
p−1
[m,m]
ω(t
k−1
)
p
nx(t
−
k
)
p
=D
p−1
[m,m]
(
p−1
Y
s=0
W
[n
p−s
m
p−s
,n]
ξ
p
(t
−
k
)
(8)
½Â
Γ
1
:= L
g
W
[N
2
n,m]
DG(0)L
h
L
g
M
[r,m]
.(9)
p≥2,
Γ
p
:= L
g
W
[N
2
n
p
,m]
DG(0)L
h
L
g
M
[r,m]
D
p−1
[m,m]
(
p−1
Y
s=0
W
[n
p−s
m
p−s
,n]
).(10)
Γ(ξ(t
−
k
)) :=
∞
X
p=1
1
p!
Γ
p
ξ
p
(t
−
k
).(11)
Ïd,XÚ(1)Œ±=†¤±e#XÚµ









˙x(t) = Ax(t),t6= t
k
,
x(t) = D
η(t)
x(t
−
),t= t
k
,k∈Z
+
,
x(0) = x
0
,
(12)
DOI:10.12677/aam.2023.1262662647A^êÆ?Ð
Ÿ7œ
Ù¥AÚD
η(t)
´~êÝ.…½Â
G(x(t
−
k
)) := [D
N−1
x(t
−
k
)D
N−2
x(t
−
k
)...D
0
x(t
−
k
)](13)
Ú
D:= [D
N−1
D
N−2
...D
0
](14)
XÚ(12)Œ±¤









˙
ξ(t) = Aξ(t),t6= t
k
,
x(t) = Λ(t)ξ(t
−
),t= t
k
,k∈Z
+
,
ξ(0) ∈∆
m
nR
n
,
(15)
Ù¥Λ := L
g
W
[N
2
n,m]
DL
h
L
g
M
[r,m]
.
4.o(
L·‚ •ïÄÜ6ÄXÚ½öóÀXÚ,3©¥·‚òÜ6 ÄXÚÚóÀXÚƒ
(Ü,òÜ6ÄXÚÑÑŠ•óÀÀJ,ÏLÝŒÜþÈ•{,˜‡#.·ÜX
Ú,™5·‚Œ±ïÄTXÚˆ«5Ÿ,'Xµ-½5.
ë•©z
[1]Benchohra, M., Henderson, J. andNtouyas, S. (2006) Impulsive Differential Equations and In-
clusions. Hindawi Publishing Corporation, NewYork. https://doi.org/10.1155/9789775945501
[2]Ballinger,G.andLiu,X.Z.(1999)ExistenceandUniquenessResultsforImpulsiveDelay
DifferentialEquations.DynamicsofContinuousDiscreteandImpulsiveSystems,5,579-591.
[3]Liu,X.andBallinger,G.(2003)BoundednessforImpulsiveDelayDifferentialEquationsand
ApplicationstoPopulationGrowthModels.NonlinearAnalysis:Theory,Methods&Applica-
tions,53,1041-1062.https://doi.org/10.1016/S0362-546X(03)00041-5
[4]Wang, Q.andLiu,X. (2005)ExponentialStability forImpulsiveDelayDifferentialEquations
byRazumikhinMethod.JournalofMathematicalAnalysisandApplications,309,462-473.
https://doi.org/10.1016/j.jmaa.2004.09.016
[5]Li,X.(2010)NewResultsonGlobalExponentialStabilizationofImpulsiveFunctionalD-
ifferentialEquationswithInfiniteDelaysorFiniteDelays.NonlinearAnalysis:RealWorld
Applications,11,4194-4201.https://doi.org/10.1016/j.nonrwa.2010.05.006
[6]Li, X.and Song,S. (2016)StabilizationofDelaySystems:Delay-Dependent ImpulsiveControl.
IEEETransactionsonAutomaticControl,62,406-411.
https://doi.org/10.1109/TAC.2016.2530041
DOI:10.12677/aam.2023.1262662648A^êÆ?Ð
Ÿ7œ
[7]Cheng,D.Z.,Qi,H.S.andLi,Z.Q.(2011)AnalysisandControlofBooleanNetworks:A
SemitensorProductApproach.Springer,NewYork.
DOI:10.12677/aam.2023.1262662649A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.