设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(6),2663-2670
PublishedOnlineJune2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.126268
êŒÅƒ†VÇÙ››ä
k•žm½
¸¸¸™™™
úô“‰ŒÆêƆOŽÅ‰ÆÆ§úô7u
ÂvFϵ2023c59F¶¹^Fϵ2023c62F¶uÙFϵ2023c69F
Á‡
©Ì‡ïÄêŒÅƒ†VÇÙ››äk•žm-½¯K§·‚‰Ñ˜‡yêŒ
цVÇÙ››äk•žm-½¿‡^‡§¿…‰ÑäNy²5Øã·‚(Ø"
'…c
ŒÜþȧêŒÅƒ†§Ùä§k•žm½
Finite-TimeStabilizationofMarkovian
SwitchingProbabiliticBoolean
ControlNetworks
ShinanLin
CollegeofMathematicsandComputerScience,ZhejiangNormalUniversity,JinhuaZhejiang
Received:May9
th
,2023;accepted:Jun.2
nd
,2023;published:Jun.9
th
,2023
Abstract
In this paper, we mainly studiesthe finite timestability problem ofMarkovian switch-
©ÙÚ^:¸™.êŒÅƒ†VÇÙ››äk•žm½[J].A^êÆ?Ð,2023,12(6):2663-2670.
DOI:10.12677/aam.2023.126268
¸™
ingprobabilityBooleancontrolnetworks.Weprovideanecessaryandsufficientcon-
ditiontoverifythefinitetimestabilityofMarkovianswitchingprobabiliticBoolean
controlnetworksandprovidespecificprooftoverifyourconclusion.
Keywords
Semi-TensorProduct,MarkovianSwitch,BooleanNetworks,Finite-Time
Stabilization
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
‘ XXÚ)ÔÆuЧNõÆö‚\ïÄÄÏN›äƒ'¯K§¿NõR
(J.ÄÏN›ä̇´•[œ½/ÚN|¥ÄσmƒpŠ^)˜Ä–ä,Ù
̇Š^´ÏL˜|©fN›Ïf(N!ÏfŒ±´DNA!RNA!xŸ½ùn«ÔŸ¥ü«½õ
«/¤EÜÔ?Û|Ü)ƒpŠ^½†[œ¥Ù¦ÔŸƒpŠ^,±››mRNAÚxŸÄ
ÏLˆY²,?û½[œõU.••\\ïÄÄÏN›ä,Æö‚lØÓÝ5ïÄÚ¿
ÛÄÏN›ä.,©OJÑˆ«ØÓêÆ.ÚOŽ.5£ãÄσmƒpŠ^'X,
~X~‡©•§.[1]!êŒÅó.[2]!Ùä[3],ùêÆ.3ÄÏZýÚN›ï
Ä¥užX-‡Š^.
31976c,KaufmanJÑÙä.,¿…r§A^uÄÏN›äSÜÄ寝K•¡
ïÄ.Ùäd˜|lÑÙCþ|¤,z‡ÙCþÑk˜‡ƒéAÙ¼ê(z‡Cþ
éA¼êŒUØÓ),¼êf
i
(½Cþie˜‡G,¿^Ù$ŽÎ∧,∨Ú¬(©O•Ü6$
ŽÎ,¿ÚÄ)L«.•C,§“Ð3ÙäÜ6ÄXÚïÄ¥Ú\˜«#•{,¡•Ý
ŒÜþÈ,Œ±^5ïÄÜ6ÄäXÚ››ƒ'¯K,ù«•{¿©Ðy§3?nlÑ
ŠXÚ•¡ƒ'¯K`5.3©z[4]¥,§“Ð<|^ÝŒÜþÈ•{,3lÑžm
ÄÜ6XÚ¥,òÜ6Cþ/00Ú/10Š=z••þ/ª[0,1]
>
Ú[1,0]
>
,?Œ±rÜ6
¼ê=z•ƒA“ê/ª.Ïd,ïÄ<‚)ûÙäU›5[5]!Œ*ÿ5[6]!-½
5[7]ƒ'¯K,¿¼˜X-‡(J.
XÚ-½Ú½¯K´˜‡š~-‡¯K,äk¢SA^dŠ.~X,3£;¾ž,<‚
F"ÏL†Ô¦¯Ú)ÔNˆnŽè xG[8].'uÙ››ä,VÇÙ››äÚê
ŒÅƒ †Ù››ä-½Ú½¯K®²NõR¤J.d§o•™3[9]¥ïÄ
DOI:10.12677/aam.2023.1262682664A^êÆ?Ð
¸™
‘kóÀÙ››ä-½Ú½¯K,¿‰Ñ˜ƒA¿‡OK.3[10]¥,4<|
^êâæ5ïÄVÇÙ››äG‡"››ì¦Ù½Ú8Ü½.
'uVÇÙ››ä,êŒ цÙ››ä½¯K®²kƒ'(J,´'u
êŒÅƒ†VÇÙ››ä½¯Kvk?Ûƒ'(Ø,¿…E,äïÄäk¢S¿
Â,Ïd·‚éÙ?1ïÄ©Û.
2.ý•£
ÎÒµD= {0,1}¶D
n
=
Q
n
i=1
D¶N´g,ê8ܶN
+
´˜‡ê8¶∗´Khatri-Raoȧ
⊗´KroneckerȶR
a×b
´˜‡a×b‘Ý¢Ý8ܶδ
i
n
´ü ÝI
n
1i-;W
[m,n]
=
[I
n
⊗δ
1
m
,I
n
⊗δ
2
m
,...,I
n
⊗δ
m
m
]´˜‡†Ý¶Φ
2
n
= δ
2
2n
[1,2
n
+2,...,(2
n
−2)2
n
+2
n
−1,2
2n
]´
˜‡ü˜Ý¶∆
n
={δ
1
n
,...,δ
n
n
}¶[a,b]={a,a+1,...,b}§Ù¥a<bÚa,b∈N
+
¶δ
i
n
´ü
ÝI
n
1i-¶∆
n
={δ
1
n
,...,δ
n
n
};A=[δ
l
1
n
,...,δ
l
s
n
],l
1
,...,l
s
∈[1,n]´˜‡Ü6Ý§{
P•A=δ
n
[l
1
,...,l
s
];L
a×b
¶L
a×b
´˜‡‘Ý•Ü6Ý8ܶ|M|L«8ÜM¥ƒ
Äê;P
m×n
´˜‡m×n‘Ý•VÇÝ8ܶ‰½˜‡ÝP∈P
m×n
,P
ij
L«1i1Ú
1jƒ§÷v0≤P
ij
≤1§
m
P
j=1
P
ij
= 1¶‰½ü‡8ÜMÚN,M\N={x∈M|x/∈N};
1
>
n
= [11···1
|
{z}
n
]¶Pr{A|B}L«¯‡A3,˜¯‡B®²u)^‡eu)VÇ.
½Â2.1.[4]‰½ü‡ ÝM∈R
n×m
ÚN∈R
p×q
,ÝMÚNŒÜþÈ$ŽXe:MnN=
(M⊗I
l/m
)(N⊗I
l/p
),P•MnN,Ù¥lL«mÚp•úê.
Ún2.1.[4]•ʇÜ6¼êf(a
1
,···,a
n
):D
n
→D,•3˜‡•˜ÝF∈L
2×2
n
,¦
δ
2−f(a
1
,···,a
n
)
2
= Fn
n
i=1
δ
2−a
i
2
,Ù¥f(ÝdFL«.
3.̇(J
·‚̇•Ä´‘ks‡ƒ†&Ò,n‡!:Úm‡››Ñ\êŒÅƒ†VÇÙ››
ä:
X
i
(t+1) = f
σ(t)
i
(X(t),U(t)),i∈[1,n],σ(t) ∈[1,s].(1)
Ù¥X(t) = (X
1
(t),···,X
n
(t)) ∈D
n
,U(t) =(U
1
(t),···,U
m
(t)) ∈D
m
©OL«XÚ(1)GÚ›
›Ñ\;σ(t)L«ƒ†&Ò,¿…ƒ†&ÒSσ(t),t∈N´˜‡k•GàgêŒÅó,§˜
mG8Ü•S= [1,s]ÚVÇ=£Ý•P.
3ÄÏN›ä¥,rXÚGÏL4‚››¦U-½3nŽG,Ïd·‚̇O˜
‡ƒ†•6››ìU(t)=k
σ(t)
(X(t)),¦XÚ(1)U½GX
e
.@o,·‚I‡k‰ÑXe
XÚ(1)k•žm½Vg.
½Â3.1.‰½˜‡GX
e
∈D
n
,•ÄXÚ(1),XJéz˜‡Ð©GX(0)=X
0
∈D
n
Úƒ
†&Òσ(0)∈S,•3˜‡êTÚ››SU:N→D
m
,¦Pr{X(t)=X
e
|X(0)=
X
0
,σ(0),U}= 1,∀t≥T,@oXÚ(1)´k•žmX
e
-½.
DOI:10.12677/aam.2023.1262682665A^êÆ?Ð
¸™
‰½˜‡ƒ†&Òσ(t)=ω,Ü6¼êf
ω
i
∈{f
ω,1
i
,f
ω,2
i
,···,f
ω,µ
ω
i
i
}:D
n
→D,ω∈[1,s],i∈
[1,n],•Ò´`z‡ƒ†&Òωe!:•#Ü6¼êf
ω
i
l8Ü{f
ω,1
i
,f
ω,2
i
,···,f
ω,µ
ω
i
i
}U˜½
VÇÀ,z‡!:Ü6¼êÀVÇ•p
ω,j
i
= Pr{f
ω
i
= f
ω,j
i
},j∈[1,µ
ω
i
],Ù¥
P
µ
ω
i
j=1
p
ω,j
i
= 1.
3ùÙ!¥,·‚bz‡ƒ†&Òσ(t)eˆ!:Ü6¼êÀ´ÕáÓ©Ù,•Ò
´`n‡!:ÀÜ6¼êu)VÇ•Pr{f
σ(t)
1
=f
σ(t),l
1
1
,···,f
σ(t)
n
=f
σ(t),l
n
n
}=Pr{f
σ(t)
1
=
f
σ(t),l
1
1
}×···×Pr{f
σ(t)
n
= f
σ(t),l
n
n
},Ù¥l
i
∈[1,µ
σ(t)
i
],i∈[1,n].3z˜‡ƒ†&Òσ(t)e,ŒÀJ
fXÚä˜k
Q
n
i=1
µ
σ(t)
i
«.3z˜‡ƒ†&Òσ(t)e,¤kfXÚ•I8ÜŒ±dXe
ÝM
σ(t)
L«,
M
σ(t)
=












11···11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11···1µ
σ(t)
n
11···21
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
µ
σ(t)
1
µ
σ(t)
2
···µ
σ(t)
n−1
µ
σ(t)
n












Ù¥M
σ(t)
∈R
µ
σ(t)
×n
Úµ
σ(t)
=
Q
n
i=1
µ
σ(t)
i
.Ý1k1L«1k‡fäXÚ,§VÇp
σ(t)
k
=
Pr{ÀJ1k‡äXÚ}=
Q
n
i=1
p
[M
σ(t)
]
ki
i
,k∈[1,µ
σ(t)
],Ù¥[M
σ(t)
]
ki
L«1k1Ú1i
ƒ.dÚn2.1,·‚Œ±Ü6¼êf
ω,µ
ω
i
i
,ω∈[1,s],i∈[1,n](ÝF
ω,µ
ω
i
i
∈L
m×n
;
Px(t) = n
n
i=1
x
i
(t)Úu(t) = n
n
i=1
u
i
(t),@oþãÜ6¼êª(1)=z•Xe“ê/ª:
x
i
(t+1) = F
σ(t)
i
u(t)x(t),σ(t) ∈[1,s],i∈[1,n].
Ù¥σ(t)∈[1,s],F
σ(t)
i
∈{F
ω,1
i
,F
ω,2
i
,···,F
ω,µ
ω
i
i
},ω∈[1,s],i∈[1,n].?˜Ú,|^Khatri-RaoÈ,
·‚kXe“ê/ª:
x(t+1) = F
σ(t)
u(t)x(t)(2)
Ù¥F
σ(t)
=∗
n
i
F
σ(t)
i
,F
σ(t)
∈{F
ω,k
|F
ω,k
=∗
n
i
F
ω,[M
σ(t)
]
ki
i
,ω∈[1,s],k∈[1,µ
σ(t)
]},¿…§VÇ
•Pr{F
σ(t)
= F
ω,k
}= p
ω
k
,k∈[1,µ
σ(t)
].éªf(2)ü>Ï",·‚k
x(k+1) = G
σ(t)
u(k)x(k),(3)
Ù¥G
σ(t)
=
P
µ
σ(t)
k=1
p
ω
k
F
σ(t),k
∈P
2
n
×2
m+n
.
Iþ/ªσ(t)Œ±=†•¥þ/ªθ(t)=δ
σ(t)
s
.Ïd,êŒÅóθ(t),t∈NG˜m•∆
s
,
¿…§VÇ=£Ý•P.4G= [G
1
,G
2
,···,G
s
],@oªf(3)dueã“ê/ª:
x(t+1) = Gθ(t)u(t)x(t) = GW
[2
m
,s]
u(t)θ(t)x(t) =
b
Gu(t)θ(t)x(t),(4)
Ù¥
b
G= GW
[2
m
,s]
.e¡,½Â9ÏCþz(t) =θ(t)nx(t) ∈∆
N
,Ù¥N= s2
n
,•Ò´`éuz˜
DOI:10.12677/aam.2023.1262682666A^êÆ?Ð
¸™
‡θ(t) ∈∆
s
Úz(t) = δ
j
N
∈∆
N
,·‚k
Pr{θ(t+1) = δ
i
s
|z(t) = δ
j
N
,u(t) = δ
k
2
m
}= [Blk
k
(P
>
⊗1
>
2
m+n
)]
ij
.(5)
(ܪf(4)Ú(5),éuz˜‡δ
i
N
,δ
j
N
∈∆
N
,·‚kPr{z(t+ 1)=δ
i
N
|z(t)=δ
j
N
,u(t)=δ
µ
j
2
m
}=
[Blk
k
(
e
G)]
ij
,Ù¥
e
G= (P
>
⊗1
>
2
m+n
)∗
b
G.@o·‚Œ±XeO2XÚ,
z(t+1) =
e
Gu(t)z(t),(6)
Ý
e
G
>
´˜‡VÇ=£Ý,=
n
P
i=1
[
e
G
>
]
ji
= 1,j∈[1,N2
m
].
XJ•3˜‡ƒ†•6››ìU(t) = k
σ(t)
(X(t)),¦XÚ(1)U½GX
e
,@oXÚA
TäkŸoA.d½Â3.1ÚÚn2.1,=•3˜‡››ìu(t) =K
σ(t)
(x(t)),¦XÚ(1)U
½Gx
e
.
·‚½Â8Üχ
e
={δ
i
s
nx
e
|i∈[1:s]},XJ•3˜‡››u∈∆
2
m
,¦Pr{z(t+1)∈χ
e
|
z(t) ∈χ
e
,u(t)=u}=1,@oχ
e
¡•ØCf8,…ØCf8χ
e
•ŒØCf8PŠ•I
ω
(χ
e
).·‚
Œ±ÏLäz(t),t∈N´ÄˆI
ω
(χ
e
)--½5äXÚ(1)´Äˆx
e
-½.·‚éN´ù‡
(صXJ•3˜‡ƒ†•6G‡"››ìu(t)=K
σ(t)
(x(t)),¦z(t),t∈NˆI
ω
(χ
e
)-½,
@oTƒ†•6G‡"››ìu(t) = K
σ(t)
(x(t)),¦XÚ(3)ˆx
e
-½.
e¡,éu9ÏCþz(t),·‚?1Xe©a,˜X8Ü{Ω
k
(I
ω
(χ
e
))}:
Ω
1
(I
ω
(χ
e
)) ={a∈∆
N
|•3˜‡››u¦
Pr{z(t+1) ∈I
ω
(χ
e
) |z(t) = a,u(t) = u}= 1}
···
Ω
k+1
(I
ω
(χ
e
)) ={a∈∆
N
|•3˜‡››u¦
Pr{z(t+1) = b|z(t) = a,u(t) = u}>0,=
b∈Ω
k
(I
ω
(χ
e
))},k∈N
+
.
{Ω
k
(I
ω
(χ
e
))},k∈N
+
´kÚVÇ•˜ˆ8IG8ÜI
ω
(χ
e
)ЩG8Ü.
éu8Ü{Ω
k
(I
ω
(χ
e
))},k∈N
+
,·‚äkXe5Ÿµa)XJé?¿z
∗
∈I
ω
(χ
e
)§z
∗
∈
Ω
1
(I
ω
(χ
e
))@oΩ
k
(I
ω
(χ
e
)) ⊆Ω
k+1
(I
ω
(χ
e
)),∀k≥1;b)XJΩ
1
(I
ω
(χ
e
)) = I
ω
(χ
e
),@oΩ
k
(I
ω
(χ
e
)) =
I
ω
(χ
e
),∀k≥1;c)XJΩ
j
(I
ω
(χ
e
))⊆Ω
j+1
(I
ω
(χ
e
))éu˜j≥1,@oΩ
k
(I
ω
(χ
e
))⊆Ω
j
(I
ω
(χ
e
)),
∀k≥j.
ù‡ÚnéN´,ÏdØ2‰•[y².ÄuO2XÚ(6)Úþã5Ÿ,·‚ŒXe½
n.
½n3.1.±e^‡¤á:1)χ
e
•ŒØCf8Ø´˜8,=I
ω
(χ
e
)6=∅;2)•3˜‡
êT≤N−|I
ω
(χ
e
)|,¦Ω
T
(I
ω
(χ
e
))=∆
N
.@o†•6G‡ "››ìu(t)=K
σ(t)
(x(t)),¦
XÚ(3)ˆx
e
-½.
DOI:10.12677/aam.2023.1262682667A^êÆ?Ð
¸™
y²µ·‚r8Ü∆
N
y©¤
∆
N
=Ω
1
(I
ω
(χ
e
))∪Ω
2
(I
ω
(χ
e
))\Ω
1
(I
ω
(χ
e
))∪···∪Ω
T
(I
ω
(χ
e
))\Ω
T−1
(I
ω
(χ
e
)).Ïdéz˜‡δ
i
N
∈
∆
N
,•3•˜˜‡Ω
h
i
(I
ω
(χ
e
)
\Ω
h
i
−1
(I
ω
(χ
e
)),Ù¥Ω
0
(I
ω
(χ
e
))=∅,¦δ
i
N
∈Ω
h
i
(I
ω
(χ
e
)\Ω
h
i
−1
(I
ω
(χ
e
)).XJh
i
=1,•3˜‡
››v
i
∈∆
2
m
,¦Pr{x(t+1)∈I
ω
(χ
e
)|x(t)=δ
i
N
,u(t)=v
i
}=1;2≤h
i
≤T,•3˜‡›
›v
i
∈∆
2
m
,¦Pr{x(t+1) ∈Ω
h
i
−1
(I
ω
(χ
e
)) |x(t) = δ
i
N
,u(t) = v
i
}= 1.4ÝK= [v
1
v
2
···v
N
].
d^‡2),Œ•Ω
T
(I
ω
(χ
e
)) = ∆
N
,éz˜‡h≥1,a∈Ω
h
(I
ω
(χ
e
))Út≥h,·‚k
P
a
1
,···,a
t−1
∈∆
N
Pr{z(1)=a
1
|z(0)=a,u(0)=Ka}×Pr{z(2)=a
2
|z(1)=a
1
,u(1)=Ka
1
}×
···×Pr{z(t)∈I
ω
(χ
e
)|z(t−1)=a
t−1
,u(t−1)=Ka
t−1
}=1.·‚^êÆ8B{y²ù˜(
Ø.a=δ
i
N
∈Ω
1
(I
ω
(χ
e
)).@o,·‚kPr{z(1)∈I
ω
(χ
e
)|z(0)=a,u(0)=Ka}=Pr{z(1)∈
I
ω
(χ
e
) |z(0) = δ
i
N
,u(0) = v
i
}= 1,¿…
X
a
1
∈∆
N
Pr{z(1) = a
1
|z(0) = a,u(0) = Ka}
×Pr{z(2) = a
2
|z(1) = a
1
,u(1) = Ka
1
}
= Pr{z(2) = a
2
|z(1) ∈I
ω
(χ
e
),u(1) = Kz(1)}
(7)
éuz˜‡a
2
∈∆
N
.d^‡1),·‚kI
ω
(χ
e
) ⊆Ω
1
(I
ω
(χ
e
)).@o,ŒXeªf:
X
a
1
∈∆
N
Pr{z(m+1) = b
1
|z(m) ∈I
ω
(χ
e
),u(m) = Kz(m)}
×Pr{z(m+2) = b
2
|z(m+1) = b
1
,u(m+1) = Kb
1
}
= Pr{z(m+2) = b
2
|z(m+1) ∈I
ω
(χ
e
),u(m) = Kz(m+1)},
b
2
∈∆
N
,m= 1,2,3,···
(8)
½êt.(Üúª(7)Ú(8),@o·‚Œ±Xeªf:
X
a
1
,···,a
t−1
∈∆
N
Pr{z(1) = a
1
|z(0) = a,u(0) = Ka}
×Pr{z(2) = a
2
|z(1) = a
1
,u(1) = Ka
1
}×···
×Pr{z(t) ∈I
ω
(χ
e
) |z(t−1) = a
t−1
,u(t−1) = Ka
t−1
}
=
X
a
2
,···,a
t−1
∈∆
N
Pr{z(2) = a
2
|z(1) ∈I
ω
(χ
e
),u(1) = Kz(1)}
×Pr{z(3) = a
3
|z(2) = a
2
,u(2) = Ka
2
}×···
×Pr{z(t) ∈I
ω
(χ
e
) |z(t−1) = a
t−1
,u(t−1) = Ka
t−1
}= ···
= Pr{z(t) ∈I
ω
(χ
e
) |z(t−1) ∈I
ω
(χ
e
),u(t−1) = Kz(t−1)}= 1.
b(Øéuh−1œ¹•¤á,Ù¥h≥2.½t≥h.XJa∈Ω
h−1
(I
ω
(χ
e
)),@o(Ø´w,
DOI:10.12677/aam.2023.1262682668A^êÆ?Ð
¸™
.Ïd,·‚•I‡y²ù«œ¹a= δ
i
N
∈Ω
h
(I
ω
(χ
e
))\Ω
h−1
(I
ω
(χ
e
)).@o,·‚k
X
a
1
,···,a
t−1
∈∆
N
Pr{z(1) = a
1
|z(0) = a,u(0) = Ka}
×Pr{z(2) = a
2
|z(1) = a
1
,u(1) = Ka
1
}×···
(9)
×Pr{z(t) ∈I
ω
(χ
e
) |z(t−1) = a
t−1
,u(t−1) = Ka
t−1
}
=
X
a
1
∈Ω
h−1
(I
ω
(χ
e
))
Pr{z(1) = a
1
|z(0) = δ
i
N
,u(0) = v
i
}×
(
X
a
2
,···,a
t−1
∈∆
N
Pr{z(2) = a
2
|z(1) ∈I
ω
(χ
e
),u(1) = Kz(1)}
×Pr{z(3) = a
3
|z(2) = a
2
,u(2) = Ka
2
}×···
×Pr{z(t) ∈I
ω
(χ
e
) |z(t−1) = a
t−1
,u(t−1) = Ka
t−1
}
)
,
ϕa
1
∈Ω
h−1
(I
ω
(χ
e
)),@o,·‚k
P
a
1
∈Ω
h−1
(I
ω
(χ
e
))
Pr{z(1) =a
1
|z(0)=δ
i
N
,u(0)=v
i
}=1.Šâ
êÆ8B{,a
1
∈Ω
h−1
(I
ω
(χ
e
)),ªf(9)mýŒ)Ò¥Úu1.Ïd,·‚k
X
a
1
,···,a
t−1
∈∆
N
Pr{z(1) = a
1
|z(0) = a,u(0) = Ka}
×Pr{z(2) = a
2
|z(1) = a
1
,u(1) = Ka
1
}×···
×Pr{z(t) ∈I
ω
(χ
e
) |z(t−1) = a
t−1
,u(t−1) = Ka
t−1
}
=
X
a
1
∈Ω
h−1
(I
ω
(χ
e
))
Pr{z(1) = a
1
|z(0) = ∆
i
N
,u(0) = v
i
}= 1.
Ïd,•3˜‡ƒ†•6G‡"ìu(t) =Kz(t)¦9ÏCþSz(t),t∈N´k•žmI
ω
(χ
e
)-
½,@o†•6G‡"››ìu(t) = K
σ(t)
(x(t)),¦XÚ(3)ˆx
e
-½
3.1.(Ø
·‚Äg JÑêŒÅƒ†VÇÙ››äa.,¿ïÄÙG‡"½¯K;·‚|^ Ý
ŒÜþÈ•{E˜‡O2XÚ(6),¿ƒ†•6G‡"››ì¦O2XÚ(6)½
¿‡^‡,,ƒ†•6G‡"››ì¦XÚ(2)½¿©^‡.
ë•©z
[1]Davidich,M.andBornholdt, S.(2008) TheTransitionfrom DifferentialEquationsto Boolean
Networks:ACaseStudyinSimplifyingaRegulatoryNetworkModel.JournalofTheoretical
Biology,255,269-277.https://doi.org/10.1016/j.jtbi.2008.07.020
DOI:10.12677/aam.2023.1262682669A^êÆ?Ð
¸™
[2]Meng,M.,Xiao,G.,Zhai,C.andLi,C.(2019)ControllabilityofMarkovianJumpBoolean
ControlNetworks.Automatica,106,70-76.https://doi.org/10.1016/j.automatica.2019.04.028
[3]Kauffman,S.(1969)MetabolicStabilityandEpigenesisinRandomlyConstructedGenetic
Nets.JournalofTheoreticalBiology,22,437-467.
https://doi.org/10.1016/0022-5193(69)90015-0
[4]Cheng, D., Qi, H.and Li, Z.(2011) AnalysisandControlof Boolean Networks—ASemi-Tensor
ProductApproach.Springer,London.
[5]R05Li,F.andSun,J.(2011)ControllabilityofProbabilisticBooleanControlNetworks.
Automatica,47,2765-2771.https://doi.org/10.1016/j.automatica.2011.09.016
[6]Cheng,D., Li,C. andHe, F.(2018)Observability ofBooleanNetworksvia SetControllability
Approach.SystemsControlLetters, 115,22-25.https://doi.org/10.1016/j.sysconle.2018.03.004
[7]Cheng,D.,Qi,H.,Li,Z.andLiu,J.(2011)StabilityandStabilizationofBooleanNetworks.
InternationalJournalofRobustandNonlinearControl,21,134-156.
https://doi.org/10.1002/rnc.1581
[8]Alberti, W.,Anderson,G., Bartolucci,A.,Bell,D. and Toni,V. (1995) Chemotherapy in Non-
SmallCellLungCancer:AMeta-AnalysisUsingUpdatedDataonIndividualPatientsfrom
52 RandomisedClinicalTrials.BMJ,311,899-909. https://doi.org/10.1136/bmj.311.7010.899
[9]Li,F.andSun,J.(2012)StabilityandStabilizationofBooleanNetworkswithImpulsive
Effects.SystemsandControlLetters,61,1-5.https://doi.org/10.1016/j.sysconle.2011.09.019
[10]Liu,Y.,Wang,L.,Lu,J.andCao,J.(2019)Sampled-DataStabilizationofProbabilistic
BooleanControlNetworks.SystemsandControlLetters,124,106-111.
https://doi.org/10.1016/j.sysconle.2018.12.012
DOI:10.12677/aam.2023.1262682670A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.