设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2023,12(6),2663-2670
PublishedOnlineJune2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.126268
ê
Œ
Å
ƒ
†
V
Ç
Ù
›
›
ä
k
•
ž
m
½
¸¸¸
™™™
ú
ô
“
‰
Œ
Æ
ê
Æ
†
O
Ž
Å
‰
ÆÆ
§
ú
ô
7
u
Â
v
F
Ï
µ
2023
c
5
9
F
¶
¹
^
F
Ï
µ
2023
c
6
2
F
¶
u
Ù
F
Ï
µ
2023
c
6
9
F
Á
‡
©
Ì
‡
ï
Ä
ê
Œ
Å
ƒ
†
V
Ç
Ù
›
›
ä
k
•
ž
m
-
½
¯
K
§
·
‚
‰
Ñ
˜
‡
y
ê
Œ
Å
ƒ
†
V
Ç
Ù
›
›
ä
k
•
ž
m
-
½
¿
‡
^
‡
§
¿
…
‰
Ñ
ä
N
y
²
5
Ø
ã
·
‚
(
Ø
"
'
…
c
Œ
Ü
þ
È
§
ê
Œ
Å
ƒ
†
§
Ù
ä
§
k
•
ž
m
½
Finite-TimeStabilizationofMarkovian
SwitchingProbabiliticBoolean
ControlNetworks
ShinanLin
CollegeofMathematicsandComputerScience,ZhejiangNormalUniversity,JinhuaZhejiang
Received:May9
th
,2023;accepted:Jun.2
nd
,2023;published:Jun.9
th
,2023
Abstract
In this paper, we mainly studiesthe finite timestability problem ofMarkovian switch-
©
Ù
Ú
^
:
¸
™
.
ê
Œ
Å
ƒ
†
V
Ç
Ù
›
›
ä
k
•
ž
m
½
[J].
A^
ê
Æ
?
Ð
,2023,12(6):2663-2670.
DOI:10.12677/aam.2023.126268
¸
™
ingprobabilityBooleancontrolnetworks.Weprovideanecessaryandsufficientcon-
ditiontoverifythefinitetimestabilityofMarkovianswitchingprobabiliticBoolean
controlnetworksandprovidespecificprooftoverifyourconclusion.
Keywords
Semi-TensorProduct,MarkovianSwitch,BooleanNetworks,Finite-Time
Stabilization
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
‘
X
X
Ú
)
Ô
Æ
u
Ð
§
N
õ
Æ
ö
‚
\
ï
Ä
Ä
Ï
N
›
ä
ƒ
'
¯
K
§
¿
N
õ
R
(
J
.
Ä
Ï
N
›
ä
Ì
‡
´
•
[
œ
½
/Ú
N
|
¥
Ä
Ï
ƒ
m
ƒ
p
Š
^
)
˜
Ä
–
ä
,
Ù
Ì
‡
Š
^
´
Ï
L
˜
|
©
f
N
›
Ï
f
(
N
!
Ï
f
Œ
±
´
DNA
!
RNA
!
x
Ÿ
½
ù
n
«
Ô
Ÿ¥
ü
«
½
õ
«
/
¤
E
Ü
Ô
?
Û
|
Ü
)
ƒ
p
Š
^
½
†
[
œ
¥
Ù
¦
Ô
Ÿ
ƒ
p
Š
^
,
±
›
›
mRNA
Ú
x
Ÿ
Ä
Ï
L
ˆ
Y
²
,
?
û
½
[
œ
õ
U
.
•
•
\
\
ï
Ä
Ä
Ï
N
›
ä
,
Æ
ö
‚
l
Ø
Ó
Ý
5
ï
Ä
Ú
¿
Û
Ä
Ï
N
›
ä
.
,
©
O
J
Ñ
ˆ
«
Ø
Ó
ê
Æ
.
Ú
O
Ž
.
5
£
ã
Ä
Ï
ƒ
m
ƒ
p
Š
^
'
X
,
~
X
~
‡
©•
§
.
[1]
!
ê
Œ
Å
ó
.
[2]
!
Ù
ä
[3]
,
ù
ê
Æ
.
3
Ä
Ï
Z
ý
Ú
N
›
ï
Ä
¥
u
ž
X
-
‡
Š
^
.
3
1976
c
,Kaufman
J
Ñ
Ù
ä
.
,
¿
…
r
§
A^u
Ä
Ï
N
›
ä
S
Ü
Ä
å
Æ
¯
K
•
¡
ï
Ä
.
Ù
ä
d
˜
|
l
Ñ
Ù
C
þ
|
¤
,
z
‡
Ù
C
þ
Ñ
k
˜
‡
ƒ
é
A
Ù
¼
ê
(
z
‡
C
þ
é
A
¼
ê
Œ
U
Ø
Ó
),
¼
ê
f
i
(
½
C
þ
i
e
˜
‡
G
,
¿
^
Ù
$
Ž
Î
∧
,
∨
Ú
¬
(
©
O
•
Ü
6
$
Ž
Î
,
¿
Ú
Ä
)
L
«
.
•
C
,
§
“
Ð3
Ù
äÜ
6
Ä
X
Ú
ï
Ä
¥
Ú
\
˜
«
#
•{
,
¡
•
Ý
Œ
Ü
þ
È
,
Œ
±
^
5
ï
Ä
Ü
6
Ä
ä
X
Ú
›
›
ƒ
'
¯
K
,
ù
«
•{
¿
©
Ð
y
§
3
?
nl
Ñ
Š
X
Ú
•
¡
ƒ
'
¯
K
`
5
.
3
©
z
[4]
¥
,
§
“
Ð
<
|
^
Ý
Œ
Ü
þ
È
•{
,
3
l
Ñ
ž
m
Ä
Ü
6
X
Ú
¥
,
ò
Ü
6
C
þ
/
0
0
Ú
/
1
0
Š
=
z
•
•
þ
/
ª
[0
,
1]
>
Ú
[1
,
0]
>
,
?
Œ
±
r
Ü
6
¼
ê
=
z
•
ƒ
A
“
ê
/
ª
.
Ï
d
,
ï
Ä
<
‚
)û
Ù
ä
U
›
5
[5]
!
Œ
*
ÿ
5
[6]
!
-
½
5
[7]
ƒ
'
¯
K
,
¿
¼
˜
X
-
‡
(
J
.
X
Ú
-
½
Ú
½
¯
K
´
˜
‡
š
~
-
‡
¯
K
,
ä
k
¢
S
A^
d
Š
.
~
X
,
3
£
;
¾
ž
,
<
‚
F
"
Ï
L
†
Ô
¦
¯
Ú
)
Ô
N
ˆ
n
Ž
è
x
G
[8].
'
u
Ù
›
›
ä
,
V
Ç
Ù
›
›
ä
Ú
ê
Œ
Å
ƒ
†
Ù
›
›
ä
-
½
Ú
½
¯
K
®
²
N
õ
R
¤
J
.
d
§
o
•™
3
[9]
¥
ï
Ä
DOI:10.12677/aam.2023.1262682664
A^
ê
Æ
?
Ð
¸
™
‘
k
ó
À
Ù
›
›
ä
-
½
Ú
½
¯
K
,
¿
‰
Ñ
˜
ƒ
A
¿
‡
O
K
.
3
[10]
¥
,
4
<
|
^
ê
â
æ
5
ï
Ä
V
Ç
Ù
›
›
ä
G
‡
"
›
›
ì
¦
Ù
½
Ú
8
Ü
½
.
'
u
V
Ç
Ù
›
›
ä
,
ê
Œ
Å
ƒ
†
Ù
›
›
ä
½
¯
K
®
²
k
ƒ
'
(
J
,
´
'
u
ê
Œ
Å
ƒ
†
V
Ç
Ù
›
›
ä
½
¯
K
v
k
?
Û
ƒ
'
(
Ø
,
¿
…
E
,
ä
ï
Ää
k
¢
S
¿
Â
,
Ï
d
·
‚
é
Ù
?
1
ï
Ä
©
Û
.
2.
ý
•
£
Î
Ò
µ
D
=
{
0
,
1
}
¶
D
n
=
Q
n
i
=1
D
¶
N
´
g
,
ê
8
Ü
¶
N
+
´
˜
‡
ê
8
¶
∗
´
Khatri-Rao
È
§
⊗
´
Kronecker
È
¶
R
a
×
b
´
˜
‡
a
×
b
‘
Ý
¢
Ý
8
Ü
¶
δ
i
n
´
ü
Ý
I
n
1
i
-
;
W
[
m,n
]
=
[
I
n
⊗
δ
1
m
,I
n
⊗
δ
2
m
,...,I
n
⊗
δ
m
m
]
´
˜
‡
†
Ý
¶
Φ
2
n
=
δ
2
2
n
[1
,
2
n
+2
,...,
(2
n
−
2)2
n
+2
n
−
1
,
2
2
n
]
´
˜
‡
ü
˜
Ý
¶
∆
n
=
{
δ
1
n
,...,δ
n
n
}
¶
[
a,b
]=
{
a,a
+1
,...,b
}
§
Ù
¥
a<b
Ú
a,b
∈
N
+
¶
δ
i
n
´
ü
Ý
I
n
1
i
-
¶
∆
n
=
{
δ
1
n
,...,δ
n
n
}
;
A
=[
δ
l
1
n
,...,δ
l
s
n
],
l
1
,...,l
s
∈
[1
,n
]
´
˜
‡
Ü
6
Ý
§
{
P
•
A
=
δ
n
[
l
1
,...,l
s
];
L
a
×
b
¶
L
a
×
b
´
˜
‡
‘
Ý
•
Ü
6
Ý
8
Ü
¶
|
M
|
L
«
8
Ü
M
¥
ƒ
Ä
ê
;
P
m
×
n
´
˜
‡
m
×
n
‘
Ý
•
V
Ç
Ý
8
Ü
¶
‰
½
˜
‡
Ý
P
∈P
m
×
n
,
P
ij
L
«
1
i
1
Ú
1
j
ƒ
§
÷
v
0
≤
P
ij
≤
1
§
m
P
j
=1
P
ij
= 1
¶
‰
½
ü
‡
8
Ü
M
Ú
N
,
M
\
N
=
{
x
∈
M
|
x/
∈
N
}
;
1
>
n
= [11
···
1
|
{z}
n
]
¶
Pr
{
A
|
B
}
L
«¯
‡
A
3
,
˜
¯
‡
B
®
²
u
)
^
‡
e
u
)
V
Ç
.
½
Â
2.1.
[4]
‰
½
ü
‡
Ý
M
∈
R
n
×
m
Ú
N
∈
R
p
×
q
,
Ý
M
Ú
N
Œ
Ü
þ
È
$
Ž
X
e
:
M
n
N
=
(
M
⊗
I
l/m
)(
N
⊗
I
l/p
)
,
P
•
M
n
N
,
Ù
¥
l
L
«
m
Ú
p
•
ú
ê
.
Ú
n
2.1.
[4]
•
Ä
˜
‡
Ü
6
¼
ê
f
(
a
1
,
···
,a
n
):
D
n
→D
,
•
3
˜
‡
•
˜
Ý
F
∈L
2
×
2
n
,
¦
δ
2
−
f
(
a
1
,
···
,a
n
)
2
=
F
n
n
i
=1
δ
2
−
a
i
2
,
Ù
¥
f
(
Ý
d
F
L
«
.
3.
Ì
‡
(
J
·
‚
Ì
‡
•
Ä
´
‘
k
s
‡
ƒ
†
&
Ò
,
n
‡
!
:
Ú
m
‡
›
›
Ñ
\
ê
Œ
Å
ƒ
†
V
Ç
Ù
›
›
ä
:
X
i
(
t
+1) =
f
σ
(
t
)
i
(
X
(
t
)
,U
(
t
))
,i
∈
[1
,n
]
,σ
(
t
)
∈
[1
,s
]
.
(1)
Ù
¥
X
(
t
) = (
X
1
(
t
)
,
···
,X
n
(
t
))
∈D
n
,
U
(
t
) =(
U
1
(
t
)
,
···
,U
m
(
t
))
∈D
m
©
OL
«
X
Ú
(1)
G
Ú
›
›
Ñ
\
;
σ
(
t
)
L
«
ƒ
†
&
Ò
,
¿
…ƒ
†
&
Ò
S
σ
(
t
)
,t
∈
N
´
˜
‡
k
•
G
à
g
ê
Œ
Å
ó
,
§
˜
m
G
8
Ü
•
S
= [1
,s
]
Ú
V
Ç
=
£
Ý
•
P
.
3
Ä
Ï
N
›
ä
¥
,
r
X
Ú
G
Ï
L
4
‚
›
›
¦
U
-
½
3
n
Ž
G
,
Ï
d
·
‚
Ì
‡
O
˜
‡
ƒ
†
•
6
›
›
ì
U
(
t
)=
k
σ
(
t
)
(
X
(
t
)),
¦
X
Ú
(1)
U
½
G
X
e
.
@
o
,
·
‚
I
‡
k
‰
Ñ
X
e
X
Ú
(1)
k
•
ž
m
½
V
g
.
½
Â
3.1.
‰
½
˜
‡
G
X
e
∈D
n
,
•
Ä
X
Ú
(1)
,
X
J
é
z
˜
‡
Ð
©
G
X
(0)=
X
0
∈D
n
Ú
ƒ
†
&
Ò
σ
(0)
∈S
,
•
3
˜
‡
ê
T
Ú
›
›
S
U
:
N
→D
m
,
¦
Pr
{
X
(
t
)=
X
e
|
X
(0)=
X
0
,σ
(0)
,U
}
= 1
,
∀
t
≥
T
,
@
o
X
Ú
(1)
´
k
•
ž
m
X
e
-
½
.
DOI:10.12677/aam.2023.1262682665
A^
ê
Æ
?
Ð
¸
™
‰
½
˜
‡
ƒ
†
&
Ò
σ
(
t
)=
ω
,
Ü
6
¼
ê
f
ω
i
∈{
f
ω,
1
i
,f
ω,
2
i
,
···
,f
ω,µ
ω
i
i
}
:
D
n
→D
,
ω
∈
[1
,s
]
,i
∈
[1
,n
],
•
Ò
´
`
z
‡
ƒ
†
&
Ò
ω
e
!
:
•
#
Ü
6
¼
ê
f
ω
i
l
8
Ü
{
f
ω,
1
i
,f
ω,
2
i
,
···
,f
ω,µ
ω
i
i
}
U
˜
½
V
Ç
À
,
z
‡
!
:
Ü
6
¼
ê
À
V
Ç
•
p
ω,j
i
= Pr
{
f
ω
i
=
f
ω,j
i
}
,
j
∈
[1
,µ
ω
i
],
Ù
¥
P
µ
ω
i
j
=1
p
ω,j
i
= 1.
3ùÙ
!
¥
,
·
‚
b
z
‡
ƒ
†
&
Ò
σ
(
t
)
e
ˆ
!
:
Ü
6
¼
ê
À
´
Õ
á
Ó
©
Ù
,
•
Ò
´
`
n
‡
!
:
À
Ü
6
¼
ê
u
)
V
Ç
•
Pr
{
f
σ
(
t
)
1
=
f
σ
(
t
)
,l
1
1
,
···
,f
σ
(
t
)
n
=
f
σ
(
t
)
,l
n
n
}
=Pr
{
f
σ
(
t
)
1
=
f
σ
(
t
)
,l
1
1
}×···×
Pr
{
f
σ
(
t
)
n
=
f
σ
(
t
)
,l
n
n
}
,
Ù
¥
l
i
∈
[1
,µ
σ
(
t
)
i
],
i
∈
[1
,n
].
3
z
˜
‡
ƒ
†
&
Ò
σ
(
t
)
e
,
Œ
À
J
f
X
Ú
ä
˜
k
Q
n
i
=1
µ
σ
(
t
)
i
«
.
3
z
˜
‡
ƒ
†
&
Ò
σ
(
t
)
e
,
¤
k
f
X
Ú
•
I
8
Ü
Œ
±
d
X
e
Ý
M
σ
(
t
)
L
«
,
M
σ
(
t
)
=
11
···
11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11
···
1
µ
σ
(
t
)
n
11
···
21
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
µ
σ
(
t
)
1
µ
σ
(
t
)
2
···
µ
σ
(
t
)
n
−
1
µ
σ
(
t
)
n
Ù
¥
M
σ
(
t
)
∈R
µ
σ
(
t
)
×
n
Ú
µ
σ
(
t
)
=
Q
n
i
=1
µ
σ
(
t
)
i
.
Ý
1
k
1
L
«
1
k
‡
f
ä
X
Ú
,
§
V
Ç
p
σ
(
t
)
k
=
Pr
{
À
J
1
k
‡
ä
X
Ú
}
=
Q
n
i
=1
p
[
M
σ
(
t
)
]
ki
i
,
k
∈
[1
,µ
σ
(
t
)
],
Ù
¥
[
M
σ
(
t
)
]
ki
L
«
1
k
1
Ú
1
i
ƒ
.
d
Ú
n
2.1,
·
‚
Œ
±
Ü
6
¼
ê
f
ω,µ
ω
i
i
,
ω
∈
[1
,s
],
i
∈
[1
,n
]
(
Ý
F
ω,µ
ω
i
i
∈L
m
×
n
;
P
x
(
t
) =
n
n
i
=1
x
i
(
t
)
Ú
u
(
t
) =
n
n
i
=1
u
i
(
t
),
@
o
þ
ã
Ü
6
¼
êª
(1)
=
z
•
X
e
“
ê
/
ª
:
x
i
(
t
+1) =
F
σ
(
t
)
i
u
(
t
)
x
(
t
)
,σ
(
t
)
∈
[1
,s
]
,i
∈
[1
,n
]
.
Ù
¥
σ
(
t
)
∈
[1
,s
],
F
σ
(
t
)
i
∈{
F
ω,
1
i
,F
ω,
2
i
,
···
,F
ω,µ
ω
i
i
}
,
ω
∈
[1
,s
],
i
∈
[1
,n
].
?
˜
Ú
,
|
^
Khatri-Rao
È
,
·
‚
k
X
e
“
ê
/
ª
:
x
(
t
+1) =
F
σ
(
t
)
u
(
t
)
x
(
t
)(2)
Ù
¥
F
σ
(
t
)
=
∗
n
i
F
σ
(
t
)
i
,
F
σ
(
t
)
∈{
F
ω,k
|
F
ω,k
=
∗
n
i
F
ω,
[
M
σ
(
t
)
]
ki
i
,
ω
∈
[1
,s
],
k
∈
[1
,µ
σ
(
t
)
]
}
,
¿
…
§
V
Ç
•
Pr
{
F
σ
(
t
)
=
F
ω,k
}
=
p
ω
k
,
k
∈
[1
,µ
σ
(
t
)
].
é
ª
f
(2)
ü
>
Ï
"
,
·
‚
k
x
(
k
+1) =
G
σ
(
t
)
u
(
k
)
x
(
k
)
,
(3)
Ù
¥
G
σ
(
t
)
=
P
µ
σ
(
t
)
k
=1
p
ω
k
F
σ
(
t
)
,k
∈P
2
n
×
2
m
+
n
.
I
þ
/
ª
σ
(
t
)
Œ
±
=
†
•
¥
þ
/
ª
θ
(
t
)=
δ
σ
(
t
)
s
.
Ï
d
,
ê
Œ
Å
ó
θ
(
t
)
,t
∈
N
G
˜
m
•
∆
s
,
¿
…
§
V
Ç
=
£
Ý
•
P
.
4
G
= [
G
1
,G
2
,
···
,G
s
],
@
o
ª
f
(3)
d
u
e
ã
“
ê
/
ª
:
x
(
t
+1) =
Gθ
(
t
)
u
(
t
)
x
(
t
) =
GW
[2
m
,s
]
u
(
t
)
θ
(
t
)
x
(
t
) =
b
Gu
(
t
)
θ
(
t
)
x
(
t
)
,
(4)
Ù
¥
b
G
=
GW
[2
m
,s
]
.
e
¡
,
½
Â
9
Ï
C
þ
z
(
t
) =
θ
(
t
)
n
x
(
t
)
∈
∆
N
,
Ù
¥
N
=
s
2
n
,
•
Ò
´
`
é
u
z
˜
DOI:10.12677/aam.2023.1262682666
A^
ê
Æ
?
Ð
¸
™
‡
θ
(
t
)
∈
∆
s
Ú
z
(
t
) =
δ
j
N
∈
∆
N
,
·
‚
k
Pr
{
θ
(
t
+1) =
δ
i
s
|
z
(
t
) =
δ
j
N
,u
(
t
) =
δ
k
2
m
}
= [Blk
k
(
P
>
⊗
1
>
2
m
+
n
)]
ij
.
(5)
(
Ü
ª
f
(4)
Ú
(5),
é
u
z
˜
‡
δ
i
N
,δ
j
N
∈
∆
N
,
·
‚
k
Pr
{
z
(
t
+ 1)=
δ
i
N
|
z
(
t
)=
δ
j
N
,u
(
t
)=
δ
µ
j
2
m
}
=
[Blk
k
(
e
G
)]
ij
,
Ù
¥
e
G
= (
P
>
⊗
1
>
2
m
+
n
)
∗
b
G
.
@
o
·
‚
Œ
±
X
e
O
2
X
Ú
,
z
(
t
+1) =
e
Gu
(
t
)
z
(
t
)
,
(6)
Ý
e
G
>
´
˜
‡V
Ç
=
£
Ý
,
=
n
P
i
=1
[
e
G
>
]
ji
= 1,
j
∈
[1
,N
2
m
].
X
J
•
3
˜
‡
ƒ
†
•
6
›
›
ì
U
(
t
) =
k
σ
(
t
)
(
X
(
t
)),
¦
X
Ú
(1)
U
½
G
X
e
,
@
o
X
Ú
A
T
ä
k
Ÿ
o
A
.
d
½
Â
3.1
Ú
Ú
n
2.1,
=
•
3
˜
‡
›
›
ì
u
(
t
) =
K
σ
(
t
)
(
x
(
t
)),
¦
X
Ú
(1)
U
½
G
x
e
.
·
‚
½
Â
8
Ü
χ
e
=
{
δ
i
s
n
x
e
|
i
∈
[1:
s
]
}
,
X
J
•
3
˜
‡
›
›
u
∈
∆
2
m
,
¦
Pr
{
z
(
t
+1)
∈
χ
e
|
z
(
t
)
∈
χ
e
,u
(
t
)=
u
}
=1,
@
o
χ
e
¡
•
ØC
f
8
,
…
ØC
f
8
χ
e
•
Œ
ØC
f
8P
Š
•
I
ω
(
χ
e
).
·
‚
Œ
±
Ï
L
ä
z
(
t
)
,t
∈
N
´
Ä
ˆ
I
ω
(
χ
e
)-
-
½
5
ä
X
Ú
(1)
´
Ä
ˆ
x
e
-
½
.
·
‚
é
N
´
ù
‡
(
Ø
µ
X
J
•
3
˜
‡
ƒ
†
•
6
G
‡
"
›
›
ì
u
(
t
)=
K
σ
(
t
)
(
x
(
t
)),
¦
z
(
t
)
,t
∈
N
ˆ
I
ω
(
χ
e
)-
½
,
@
o
T
ƒ
†
•
6
G
‡
"
›
›
ì
u
(
t
) =
K
σ
(
t
)
(
x
(
t
)),
¦
X
Ú
(3)
ˆ
x
e
-
½
.
e
¡
,
é
u
9
Ï
C
þ
z
(
t
),
·
‚
?
1
X
e
©
a
,
˜
X
8
Ü
{
Ω
k
(
I
ω
(
χ
e
))
}
:
Ω
1
(
I
ω
(
χ
e
)) =
{
a
∈
∆
N
|
•
3
˜
‡
›
›
u
¦
Pr
{
z
(
t
+1)
∈
I
ω
(
χ
e
)
|
z
(
t
) =
a,u
(
t
) =
u
}
= 1
}
···
Ω
k
+1
(
I
ω
(
χ
e
)) =
{
a
∈
∆
N
|
•
3
˜
‡
›
›
u
¦
Pr
{
z
(
t
+1) =
b
|
z
(
t
) =
a,u
(
t
) =
u
}
>
0
,
=
b
∈
Ω
k
(
I
ω
(
χ
e
))
}
,k
∈
N
+
.
{
Ω
k
(
I
ω
(
χ
e
))
}
,
k
∈
N
+
´
k
Ú
V
Ç
•
˜
ˆ
8
I
G
8
Ü
I
ω
(
χ
e
)
Ð
©
G
8
Ü
.
é
u
8
Ü
{
Ω
k
(
I
ω
(
χ
e
))
}
,
k
∈
N
+
,
·
‚
ä
k
X
e
5
Ÿ
µ
a)
X
J
é
?
¿
z
∗
∈
I
ω
(
χ
e
)
§
z
∗
∈
Ω
1
(
I
ω
(
χ
e
))
@
o
Ω
k
(
I
ω
(
χ
e
))
⊆
Ω
k
+1
(
I
ω
(
χ
e
)),
∀
k
≥
1;b)
X
J
Ω
1
(
I
ω
(
χ
e
)) =
I
ω
(
χ
e
),
@
o
Ω
k
(
I
ω
(
χ
e
)) =
I
ω
(
χ
e
),
∀
k
≥
1;c)
X
J
Ω
j
(
I
ω
(
χ
e
))
⊆
Ω
j
+1
(
I
ω
(
χ
e
))
é
u
˜
j
≥
1,
@
o
Ω
k
(
I
ω
(
χ
e
))
⊆
Ω
j
(
I
ω
(
χ
e
)),
∀
k
≥
j
.
ù
‡
Ú
n
é
N
´
,
Ï
d
Ø
2
‰
•[
y
²
.
Ä
u
O
2
X
Ú
(6)
Ú
þ
ã
5
Ÿ
,
·
‚
Œ
X
e
½
n
.
½
n
3.1.
±
e
^
‡
¤
á
:
1)
χ
e
•
Œ
ØC
f
8
Ø
´
˜
8
,
=
I
ω
(
χ
e
)
6
=
∅
;
2)
•
3
˜
‡
ê
T
≤
N
−|
I
ω
(
χ
e
)
|
,
¦
Ω
T
(
I
ω
(
χ
e
))=∆
N
.
@
o
†
•
6
G
‡
"
›
›
ì
u
(
t
)=
K
σ
(
t
)
(
x
(
t
))
,
¦
X
Ú
(3)
ˆ
x
e
-
½
.
DOI:10.12677/aam.2023.1262682667
A^
ê
Æ
?
Ð
¸
™
y
²
µ
·
‚
r
8
Ü
∆
N
y
©
¤
∆
N
=Ω
1
(
I
ω
(
χ
e
))
∪
Ω
2
(
I
ω
(
χ
e
))
\
Ω
1
(
I
ω
(
χ
e
))
∪···∪
Ω
T
(
I
ω
(
χ
e
))
\
Ω
T
−
1
(
I
ω
(
χ
e
)).
Ï
d
é
z
˜
‡
δ
i
N
∈
∆
N
,
•
3
•
˜˜
‡
Ω
h
i
(
I
ω
(
χ
e
)
\
Ω
h
i
−
1
(
I
ω
(
χ
e
)),
Ù
¥
Ω
0
(
I
ω
(
χ
e
))=
∅
,
¦
δ
i
N
∈
Ω
h
i
(
I
ω
(
χ
e
)
\
Ω
h
i
−
1
(
I
ω
(
χ
e
)).
X
J
h
i
=1,
•
3
˜
‡
›
›
v
i
∈
∆
2
m
,
¦
Pr
{
x
(
t
+1)
∈
I
ω
(
χ
e
)
|
x
(
t
)=
δ
i
N
,u
(
t
)=
v
i
}
=1;
2
≤
h
i
≤
T
,
•
3
˜
‡
›
›
v
i
∈
∆
2
m
,
¦
Pr
{
x
(
t
+1)
∈
Ω
h
i
−
1
(
I
ω
(
χ
e
))
|
x
(
t
) =
δ
i
N
,u
(
t
) =
v
i
}
= 1.
4
Ý
K
= [
v
1
v
2
···
v
N
].
d
^
‡
2),
Œ
•
Ω
T
(
I
ω
(
χ
e
)) = ∆
N
,
é
z
˜
‡
h
≥
1,
a
∈
Ω
h
(
I
ω
(
χ
e
))
Ú
t
≥
h
,
·
‚
k
P
a
1
,
···
,a
t
−
1
∈
∆
N
Pr
{
z
(1)=
a
1
|
z
(0)=
a,u
(0)=
Ka
}×
Pr
{
z
(2)=
a
2
|
z
(1)=
a
1
,u
(1)=
Ka
1
}×
···×
Pr
{
z
(
t
)
∈
I
ω
(
χ
e
)
|
z
(
t
−
1)=
a
t
−
1
,u
(
t
−
1)=
Ka
t
−
1
}
=1.
·
‚
^
ê
Æ
8
B
{
y
²
ù
˜
(
Ø
.
a
=
δ
i
N
∈
Ω
1
(
I
ω
(
χ
e
)).
@
o
,
·
‚
k
Pr
{
z
(1)
∈
I
ω
(
χ
e
)
|
z
(0)=
a,u
(0)=
Ka
}
=Pr
{
z
(1)
∈
I
ω
(
χ
e
)
|
z
(0) =
δ
i
N
,u
(0) =
v
i
}
= 1,
¿
…
X
a
1
∈
∆
N
Pr
{
z
(1) =
a
1
|
z
(0) =
a,u
(0) =
Ka
}
×
Pr
{
z
(2) =
a
2
|
z
(1) =
a
1
,u
(1) =
Ka
1
}
= Pr
{
z
(2) =
a
2
|
z
(1)
∈
I
ω
(
χ
e
)
,u
(1) =
Kz
(1)
}
(7)
é
u
z
˜
‡
a
2
∈
∆
N
.
d
^
‡
1),
·
‚
k
I
ω
(
χ
e
)
⊆
Ω
1
(
I
ω
(
χ
e
)).
@
o
,
Œ
X
e
ª
f
:
X
a
1
∈
∆
N
Pr
{
z
(
m
+1) =
b
1
|
z
(
m
)
∈
I
ω
(
χ
e
)
,u
(
m
) =
Kz
(
m
)
}
×
Pr
{
z
(
m
+2) =
b
2
|
z
(
m
+1) =
b
1
,u
(
m
+1) =
Kb
1
}
= Pr
{
z
(
m
+2) =
b
2
|
z
(
m
+1)
∈
I
ω
(
χ
e
)
,u
(
m
) =
Kz
(
m
+1)
}
,
b
2
∈
∆
N
,m
= 1
,
2
,
3
,
···
(8)
½
ê
t
.
(
Ü
ú
ª
(7)
Ú
(8),
@
o
·
‚
Œ
±
X
e
ª
f
:
X
a
1
,
···
,a
t
−
1
∈
∆
N
Pr
{
z
(1) =
a
1
|
z
(0) =
a,u
(0) =
Ka
}
×
Pr
{
z
(2) =
a
2
|
z
(1) =
a
1
,u
(1) =
Ka
1
}×···
×
Pr
{
z
(
t
)
∈
I
ω
(
χ
e
)
|
z
(
t
−
1) =
a
t
−
1
,u
(
t
−
1) =
Ka
t
−
1
}
=
X
a
2
,
···
,a
t
−
1
∈
∆
N
Pr
{
z
(2) =
a
2
|
z
(1)
∈
I
ω
(
χ
e
)
,u
(1) =
Kz
(1)
}
×
Pr
{
z
(3) =
a
3
|
z
(2) =
a
2
,u
(2) =
Ka
2
}×···
×
Pr
{
z
(
t
)
∈
I
ω
(
χ
e
)
|
z
(
t
−
1) =
a
t
−
1
,u
(
t
−
1) =
Ka
t
−
1
}
=
···
= Pr
{
z
(
t
)
∈
I
ω
(
χ
e
)
|
z
(
t
−
1)
∈
I
ω
(
χ
e
)
,u
(
t
−
1) =
Kz
(
t
−
1)
}
= 1
.
b
(
Ø
é
u
h
−
1
œ
¹
•
¤
á
,
Ù
¥
h
≥
2.
½
t
≥
h
.
X
J
a
∈
Ω
h
−
1
(
I
ω
(
χ
e
)),
@
o
(
Ø
´
w
,
DOI:10.12677/aam.2023.1262682668
A^
ê
Æ
?
Ð
¸
™
.
Ï
d
,
·
‚
•
I
‡
y
²
ù
«
œ
¹
a
=
δ
i
N
∈
Ω
h
(
I
ω
(
χ
e
))
\
Ω
h
−
1
(
I
ω
(
χ
e
)).
@
o
,
·
‚
k
X
a
1
,
···
,a
t
−
1
∈
∆
N
Pr
{
z
(1) =
a
1
|
z
(0) =
a,u
(0) =
Ka
}
×
Pr
{
z
(2) =
a
2
|
z
(1) =
a
1
,u
(1) =
Ka
1
}×···
(9)
×
Pr
{
z
(
t
)
∈
I
ω
(
χ
e
)
|
z
(
t
−
1) =
a
t
−
1
,u
(
t
−
1) =
Ka
t
−
1
}
=
X
a
1
∈
Ω
h
−
1
(
I
ω
(
χ
e
))
Pr
{
z
(1) =
a
1
|
z
(0) =
δ
i
N
,u
(0) =
v
i
}×
(
X
a
2
,
···
,a
t
−
1
∈
∆
N
Pr
{
z
(2) =
a
2
|
z
(1)
∈
I
ω
(
χ
e
)
,u
(1) =
Kz
(1)
}
×
Pr
{
z
(3) =
a
3
|
z
(2) =
a
2
,u
(2) =
Ka
2
}×···
×
Pr
{
z
(
t
)
∈
I
ω
(
χ
e
)
|
z
(
t
−
1) =
a
t
−
1
,u
(
t
−
1) =
Ka
t
−
1
}
)
,
Ï
•
a
1
∈
Ω
h
−
1
(
I
ω
(
χ
e
)),
@
o
,
·
‚
k
P
a
1
∈
Ω
h
−
1
(
I
ω
(
χ
e
))
Pr
{
z
(1) =
a
1
|
z
(0)=
δ
i
N
,u
(0)=
v
i
}
=1.
Š
â
ê
Æ
8
B
{
,
a
1
∈
Ω
h
−
1
(
I
ω
(
χ
e
)),
ª
f
(9)
m
ý
Œ
)
Ò
¥
Ú
u
1.
Ï
d
,
·
‚
k
X
a
1
,
···
,a
t
−
1
∈
∆
N
Pr
{
z
(1) =
a
1
|
z
(0) =
a,u
(0) =
Ka
}
×
Pr
{
z
(2) =
a
2
|
z
(1) =
a
1
,u
(1) =
Ka
1
}×···
×
Pr
{
z
(
t
)
∈
I
ω
(
χ
e
)
|
z
(
t
−
1) =
a
t
−
1
,u
(
t
−
1) =
Ka
t
−
1
}
=
X
a
1
∈
Ω
h
−
1
(
I
ω
(
χ
e
))
Pr
{
z
(1) =
a
1
|
z
(0) = ∆
i
N
,u
(0) =
v
i
}
= 1
.
Ï
d
,
•
3
˜
‡
ƒ
†
•
6
G
‡
"
ì
u
(
t
) =
Kz
(
t
)
¦
9
Ï
C
þ
S
z
(
t
)
,t
∈
N
´
k
•
ž
m
I
ω
(
χ
e
)-
½
,
@
o
†
•
6
G
‡
"
›
›
ì
u
(
t
) =
K
σ
(
t
)
(
x
(
t
)),
¦
X
Ú
(3)
ˆ
x
e
-
½
3.1.
(
Ø
·
‚
Ä
g
J
Ñ
ê
Œ
Å
ƒ
†
V
Ç
Ù
›
›
ä
a
.
,
¿
ï
Ä
Ù
G
‡
"
½
¯
K
;
·
‚
|
^
Ý
Œ
Ü
þ
È
•{
E
˜
‡
O
2
X
Ú
(6),
¿
ƒ
†
•
6
G
‡
"
›
›
ì
¦
O
2
X
Ú
(6)
½
¿
‡
^
‡
,
,
ƒ
†
•
6
G
‡
"
›
›
ì
¦
X
Ú
(2)
½
¿
©
^
‡
.
ë
•
©
z
[1]Davidich,M.andBornholdt, S.(2008) TheTransitionfrom DifferentialEquationsto Boolean
Networks:ACaseStudyinSimplifyingaRegulatoryNetworkModel.
JournalofTheoretical
Biology
,
255
,269-277.https://doi.org/10.1016/j.jtbi.2008.07.020
DOI:10.12677/aam.2023.1262682669
A^
ê
Æ
?
Ð
¸
™
[2]Meng,M.,Xiao,G.,Zhai,C.andLi,C.(2019)ControllabilityofMarkovianJumpBoolean
ControlNetworks.
Automatica
,
106
,70-76.https://doi.org/10.1016/j.automatica.2019.04.028
[3]Kauffman,S.(1969)MetabolicStabilityandEpigenesisinRandomlyConstructedGenetic
Nets.
JournalofTheoreticalBiology
,
22
,437-467.
https://doi.org/10.1016/0022-5193(69)90015-0
[4]Cheng, D., Qi, H.and Li, Z.(2011) AnalysisandControlof Boolean Networks—ASemi-Tensor
ProductApproach.Springer,London.
[5]R05Li,F.andSun,J.(2011)ControllabilityofProbabilisticBooleanControlNetworks.
Automatica
,
47
,2765-2771.https://doi.org/10.1016/j.automatica.2011.09.016
[6]Cheng,D., Li,C. andHe, F.(2018)Observability ofBooleanNetworksvia SetControllability
Approach.
SystemsControlLetters
,
115
,22-25.https://doi.org/10.1016/j.sysconle.2018.03.004
[7]Cheng,D.,Qi,H.,Li,Z.andLiu,J.(2011)StabilityandStabilizationofBooleanNetworks.
InternationalJournalofRobustandNonlinearControl
,
21
,134-156.
https://doi.org/10.1002/rnc.1581
[8]Alberti, W.,Anderson,G., Bartolucci,A.,Bell,D. and Toni,V. (1995) Chemotherapy in Non-
SmallCellLungCancer:AMeta-AnalysisUsingUpdatedDataonIndividualPatientsfrom
52 RandomisedClinicalTrials.
BMJ
,
311
,899-909. https://doi.org/10.1136/bmj.311.7010.899
[9]Li,F.andSun,J.(2012)StabilityandStabilizationofBooleanNetworkswithImpulsive
Effects.
SystemsandControlLetters
,
61
,1-5.https://doi.org/10.1016/j.sysconle.2011.09.019
[10]Liu,Y.,Wang,L.,Lu,J.andCao,J.(2019)Sampled-DataStabilizationofProbabilistic
BooleanControlNetworks.
SystemsandControlLetters
,
124
,106-111.
https://doi.org/10.1016/j.sysconle.2018.12.012
DOI:10.12677/aam.2023.1262682670
A^
ê
Æ
?
Ð