设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(6),2861-2875
PublishedOnlineJune2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.126288
õ‘žm©êÔ.•§‡¯K
[_•{
………!!!
Ü“‰ŒÆêƆÚOÆ,[‹=²
ÂvFϵ2023c525F¶¹^Fϵ2023c619F¶uÙFϵ2023c627F
Á‡
©|^©ê[_•{)ûõ‘žm©êÔ.•§‡¯K§T‡¯K´Ø·½"Ä
k‰Ñ‡¯K^‡-½5§,JÑ©ê[_•{§=3•§¥Ú\†ý‡©Žf
k'#6Ä‘§•Äuõ‘Mittag-Leffler¼ê˜5Ÿ§3nØþ·‚‰ÑKz
)3kKzëêÀJ5KeƒAÂñ„Ý"
'…c
õ‘žm©êÔ.•§‡¯K§[_Kz•{§ØO
AQuasi-InverseMethodforInverse
ProblemsofParabolicEquations
oftheTimeFractionalOrder
YuxinWang
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:May25
th
,2023;accepted:Jun.19
th
,2023;published:Jun.27
th
,2023
©ÙÚ^:…!.õ‘žm©êÔ.•§‡¯K[_•{[J].A^êÆ?Ð,2023,12(6):2861-2875.
DOI:10.12677/aam.2023.126288
…!
Abstract
Inthispaper,thefractionalquasi-inversemethodisusedtosolvetheinversesource
problemofpolynomialtimefractionalparabolicequations,whichisill-posed.First-
ly,theconditionalstabilityoftheinverseproblemisgiven,andthenthefractional
quasi-inversemethodisproposed,thatis,theperturbationtermrelatedtoelliptic
differentialoperatorisintroducedintotheoriginalequation.Finally,basedonsome
properties ofMittag-Leffler function,the correspondingconvergencerateof theregu-
larsolutionunderthepriorselectionruleisgivenintheory.
Keywords
TheInverseSourceProblemofMultipleTimeFractionalParabolicEquations,Quasi
InverseRegularizationMethod,ErrorEstimation
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
©ê‡©•§A^2•,…T•§U[pÝšþ¹Y¥É~*Ñy–,•Œ±^5?
1œhÚÀYtÿ,ÏdkéõÆöÑ3ïÄ.ü‘žm©ê*Ñ•§†ê*Ñ•§
kéŒØÓ,XžmþP~…ú.©ê‡©•§´)ÔÆ[1],ÔnÆ[2–4],7KÆ[5]Nõ
¯Kï-‡óä,¿…UéÐ/^5£ã/e6N6Ä[6],/4ே[7]Ú‘ÅL§[8],
¿…©ê‡©•§„Œ±éÐ/^5£ãÉ~*ÑL§[9],ÚåéõÆö'5ÚïÄ.õ
‘©ê*ч©•§†ü‘©ê‡©•§ƒ',kX•ÐA:,§U•\°(/[¢S¯
K,U•Ï·‚•k/?n¯K.Ïd,T•§ïÄäk›©-‡nØ¿Â9A^dŠ.,
,3,¢Sœ¹¥,>.êâ,Ü©,½Ð©G,½ýŽf¥,Xê,½‘,½©
êŒU´™•,…Ã{†ÿþ½ÿþ¤Lp.Ïd·‚ÏLÿþêâ5£O§‚,ù
Ò)©ê*Ñ•§‡¯K.3¢S¯K°Äe,8c•Ž,‡¯K®¤••-‡©ê
‡¯Kƒ˜.·‚¤‡ïÄ‡¯K´Ø·½,I‡^Kz•{5?n¯K.
Cc5,[_Kz•{ïÄÉ¯õÆö“à,§nÒ´3•§Ä:þ\þ
˜‡6Ä,¦\L6Ä½)¯KC·½,?ÏL¦)Kz)5%CØ·½¯K).
DOI:10.12677/aam.2023.1262882862A^êÆ?Ð
…!
[_•{´˜a²;Kz•{,²~^5?nNõ¾¯K.©¥[_Kz•{´3
õ‘[_•{‡üЊ½‘Ä:þ\˜‘6Ä,¦ò¯K¾5k/?,l
¦•§·½,¿ƒAKz).
©·‚ïÄ•§.Xe¤«







m
P
j=1
q
j
∂
α
j
0
+
u(x,t)+A
β
u(x,t) = f(x)h(t),(x,t) ∈Ω
T
:= Ω×I,
u(x,0) = 0,x∈Ω,
u(x,t) = 0,(x,t) ∈∂Ω×I,
(1)
Ù¥I=(0,T),T>0´½¿…∂
α
j
0+
´Caputo©êê,β´‰½ê.-A:H
2
(Ω)∩
H
1
0
(Ω)⊂L
2
(Ω)→L
2
(Ω),Ù¥Ω⊂R
d
•1w«•,A3L
2
(Ω)þ´gŠ˜—ýŽf¦
A3L
2
(Ω)þ)¤˜‡;Œ+{S(t)}
t≥0
.AAŠ´0<λ
1
≤λ
2
≤···≤λ
p
≤···,
lim
p→∞
λ
p
=+∞,ŽfAAŠ^λ
p
L«,ƒAA¼êϕ
p
∈L
2
(Ω),kAϕ
p
=λ
p
ϕ
p
.
-ψ=
P
∞
n=1
(ψ,ϕ
p
)ϕ
p
,kAψ=
P
∞
n=1
λ
p
(ψ,ϕ
p
)ϕ
p
.éu?¿γ>0,½Â
D((A)
γ
) =
(
ψ∈L
2
(Ω) :
∞
X
n=1
λ
2γ
n
|(ψ,ϕ
p
)|
2
<∞
)
,
Ù¥(·,·)´3HþSÈ,§‰ê½Â´
kψk
γ
=
(
∞
X
n=1
λ
2γ
n
|(ψ,ϕ
p
)|
2
)
1
2
,ψ∈D(A
p
).
…kA
β
ψ=
P
∞
n=1
λ
β
p
(ψ,ϕ
p
)ϕ
p
.½?¿êm,α=(α
1
,...,α
m
)ÚXêq=(q
1
,...,q
m
)÷v
S'X
B:= {(α
1
,...,α
m
) ∈R
s
;α≥α
1
>α
2
>···>α
s
≥α},(2)
Q:= {(q
1
,...,q
s
) ∈R
s
;q
1
= 1,q
j
∈[q,q],(j= 2,...,m)},(3)
…÷v0 <α<α<1Ú0 <q<q.
t= T,ku(x,T) = g.þª¥gŠ•ÿþêâ,´3¢SA^¥,ÿþêâ ¹kD
Ñ.·‚^ε>0L«DÑY²,^g
ε
L«\DÑÿþêâ,¿…kkg−g
ε
k≤ε¤á.
â·‚¤•,Cc5,ü‘©ê*Ñ•§‡ü‘nة۱9ꊕ{‡¯K
éŒ?Ð.Ü<[10]3˜‘œ¹e¦^ü:…Üêâ£O˜m‘•˜5.Ÿx
<[11]ïÄlõ‘žm©ê* Ñ•§¥>.¢ÿê⥣Oјm‘,¿‰Ñ.Ê.dC
†‡¯K•˜5(J.3Kz•{•¡,Ÿx<[12]JÑ˜«U?[>.ŠKz•
{§ÏL\D(•ªêâ5?n‡¯K.~<[13]|^©êLandweberS“Kz•
{,ÏL\DÑ•ª*ÿêâ5£O˜m‘¯K.šS9<[14]|^C©ðªò™•
žmƒ'ÚSÜÿþëå5,A^ÝFÝ•{5¡E™•.d,„kÆöïÄÓž‡
ü‘ÚÙ¦ëê.~X,4U<[15]ïÄÓž‡ü‡¯K¥>.{|XêÚ˜mƒ'
‘.4U<[16]ïÄ†ëYžm‘Åir¯Kƒ'õš0Ÿ*Ñ•§,¿JÑäk
nØ©Û[_Kz•{.§A<[17]‰Ñ˜‘©ê*Ñ•§¯K•˜5.o“
DOI:10.12677/aam.2023.1262882863A^êÆ?Ð
…!
<[18]æ^>.ÿþ•{y²‡¯K•˜5(J.df<[19]JÑ˜«S“Kz•{
5)ûžm©ê*Ñ•§‡¯K.df<[20]^ü«Kz•{?Øžm©ê*Ñ•
§‡ü˜m‘¯K.
3©¥,·‚•Ä©êβ´?¿¢ê,‘´˜‡†žmk'¼ê.[_•{n
´^f
α
%C(1)¥f:







m
P
j=1
q
j
∂
α
j
0
+
v(x,t)+A
β
v(x,t) = (I+αA
b
)f
α
(x)h(t),(x,t) ∈Ω
T
:= Ω×I,
v(x,0) = 0,x∈Ω,
v(x,t) = 0,(x,t) ∈∂Ω×I,
(4)
Ù¥α>0´Kzëê,b6= β´?¿¢ê.
3©,·‚;5uõ‘žm©ê‡¯K.·‚Äk‰Ñ¯KØ·½5Ï,¿¼
‡¯K^‡-½5.Ùg,JÑ[_•{¦)‡¯K.ÄukKzëêÀJ5K,‰Ñ
°()ÚKz)ƒmÂñO.Š5¿´,õ‘Mittag-Leffler¼ê5ŸŒ±wŠ´©
˜:.3ùp,·‚l[21,22]¥éõ'uõ‘Mittag-Leffler¼êk^5Ÿ.
©|„Xe.312!¥,·‚Jø˜ý•£.313!¥,‰Ñ‡¯K^‡-
½5.314!¥,·‚‰ÑKz)Lˆª,¿‰ÑkKzëêÀJ5KeƒAÂñ„
Ý.
2.ý•£
½Â2.1Caputo©êê∂
α
j
0+
½Â´
∂
α
j
0+
u(x,t) =
1
Γ(1−α
j
)
Z
t
0
∂u(x,s)
∂s
ds
(t−s)
α
j
,0 <α
j
<1,0 <t<T,
Ù¥Γ´Gamma¼ê,T>0´½ªŠ.
½Â2.2 [18]õ‘Mittag-Leffler¼ê½Â´
E
(θ
1
,···,θ
m
),θ
0
(z
1
,···,z
m
) :=
∞
X
k=0
X
k
1
+···+k
m
=k
(k;k
1
,···,k
m
)
Q
m
j=1
z
k
j
j
Γ(θ
0
+
P
m
j=1
θ
j
k
j
)
,
Ù¥θ
0
,θ
j
∈R,z
j
∈C(j= 1,···,s),…(k;k
1
,···,k
m
)L«õ‘Xê
(k;k
1
,···,k
m
) :=
k!
k
1
!···k
m
!
,k=
m
X
j=1
k
j
,
Ù¥k
j
(j= 1,···,m)´šKê.
•¡•B,XJα=(α
1
,...,α
m
)Ú§Xêq=(q
1
,...,q
m
)÷v(2)Ú(3),·‚ke¡
{
E
(p)
α
0
,β
(t) := E
(α
1
,α
1
−α
2
,···,α
1
−α
m
),β
(−λ
p
t
α
1
,−q
2
t
α
1
−α
2
,···,−q
m
t
α
1
−α
m
),t>0,p= 1,2,...,
DOI:10.12677/aam.2023.1262882864A^êÆ?Ð
…!
Ù¥α
0
=(α
1
,α
1
−α
2
,···,α
1
−α
m
)Úλ
p
L«àgDirichlet>.^‡eýŽfA1p‡A
Š.
Ún2.3[23]‰½β>0Ú1>α
1
>···>α
m
>0.α
1
π/2<µ<α
1
π,µ≤|arg(z
1
)|≤π
Úπ−≤|argz
j
|≤π,j=2,···,m,ùp´v,K•3˜‡•6uµ,α
j
(j=1,···,m)
Úβ~êC
1
>0¦
|E
(α
1
,α
1
−α
2
,···,α
1
−α
m
),β
(z
1
,···,z
m
)|≤
C
1
1+|z
1
|
.(5)
Ún2.4 [18]-0 <α
m
<α
m−1
<···<α
1
<1.K
d
dt
n
t
α
1
E
(p)
α
0
,1+α
1
(t)
o
= t
α
1
−1
E
(p)
α
0
,α
1
(t),t>0.
Ún2.5 [18]-0 <α
m
<α
m−1
<···<α
1
<1,¼êt
α
1
−1
E
(p)
α
0
,α
1
(t)ét>0´.
·K2.6-λ
p
>0Ú0<α
m
<α
m−1
<···<α
1
<1,Két>0k0<λ
p
t
α
1
E
(p)
α
0
,1+α
1
(t)<1,¿
…λ
p
t
α
1
E
(p)
α
0
,1+α
1
(t)3t>0´î‚O¼ê.
y
d
dt
n
λ
p
t
α
1
E
(p)
α
0
,1+α
1
(t)
o
= λ
p
t
α
1
−1
E
(p)
α
0
,α
1
(t) >0.
·‚5¿λ
p
t
α
1
E
(p)
α
0
,1+α
1
(t)3tþ´ëY¼ê.Ïd,·‚klim
t→0
(λ
p
t
α
1
E
(p)
α
0
,1+α
1
(t))=0
Úlim
t→∞
(λ
p
t
α
1
E
(p)
α
0
,1+α
1
(t)) = C
1
.y..
Ún2.7[18]éλ
p
>0Ú0<α
s
<α
s−1
<···<α
1
<1, •3˜‡•6uα,T~êC<1
¦
C
λ
p
T
α
1
≤E
(p)
α
0
,1+α
1
(T) ≤
1
T
α
1
λ
p
.
½Â2.8-b≥β.éz˜‡v∈H,B
α
v½ÂXe
B
α
v:=
∞
X
n=1

1
1+αλ
b
n

hv,φ
n
iφ
n
.
bH.·‚•ʇ¼êh:[0,T]→R,XJh3[0,T]´ëY,•3˜‡~êT
0
∈[0,T)¦
éu˜~êη>0,k|h(t)|≥η>0,t∈[T
0
,T]¤á,KhÒ¡•÷vbH.d,„I‡÷v±
eü^‡ƒ˜:
H1 h(t)3[0,T]þØCÒ.
H2 XJh(t)3[0,T]þCÒ,Kh(t)´Œ‡,…•3˜‡~êθ¦|h
t
(t)|≤q,t∈[0,T].¿
…k|h(t)|≤
η(T−T
0
)
T
0
,t∈I,Ù¥I= {t: h(t)h(T) <0}.
51bH2 #Nh(t)3[0,T]þCÒ,3ù«œ¹,b H2‡(fLˆªmý©1Ø
•",=
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)ds6= 0.
DOI:10.12677/aam.2023.1262882865A^êÆ?Ð
…!
½n2.9‡¯K(1)kXe•˜)
f(x) =
∞
X
n=1
hg,φ
n
iφ
n
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds
.
yŠâ©z[18],¯K(1))kXeLˆª
u(x,t) =
∞
X
n=1
f
n
Q
n
(t)φ
n
(x),(6)
Ù¥H
n
(t)=
R
t
0
h(s)(t−s)
α
1
−1
E
(n)
α
0
,α
1
(t−s)ds,f
n
=(f,φ
n
).t=T,du(x,T)=g,^þªÚφ
n
‰SÈ,·‚k
hg,φ
n
i=
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)dshf,φ
n
i.
?˜Ú,·‚k
f(x) =
∞
X
n=1
hg,φ
n
iφ
n
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds
.
y..
3.‡¯K^‡-½5
½n3.1bh(t)÷vbHÚf(x)´¯K(1)).é˜~êEÚp,XJku(x,T)k=
kgk≤εÚkfk
p
≤E,K•3˜‡~êC
1
>0¦
kfk≤C
1
ε
p
p+β
E
β
p+β
.(7)
•y²½n3.1,·‚I‡±e(J.
Ún3.2XJh(t)÷vbH,K•3˜‡~êC
2
>0¦




λ
β
n
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds




≥C
2
,n= 1,2,···
yœ¹1.h(t)÷vbH1.duh(t)3[0,T]þØCÒ,·‚k




λ
β
n
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds




= λ
β
n
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)|h(s)|ds
≥η
Z
T
T
0
λ
β
n
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)ds
= ηλ
β
n
(T−T
0
)
α
1
E
(n)
α
0
,1+α
1
(T−T
0
)
≥ηλ
β
1
(T−T
0
)
α
1
E
(n)
α
0
,1+α
1
(T−T
0
)
(8)
DOI:10.12677/aam.2023.1262882866A^êÆ?Ð
…!
œ¹2.h(t)÷vbH2.-D= t: h(t)h(T) ≥0,T
1
= max{t: t∈[0,T],h(t) = 0}Ú
C
3
=

C(−|h(0)|+q)
η

1
β
,(9)
Ù¥C
1
3Ún2.3¥®²‰½.·‚k0<T
1
<T
0
,[T
1
,T]⊆DÚI⊆[0,T
1
].λ
n
≥C
3
,ÏL·
K2.5,·‚k




λ
β
n
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds




= λ
β
n




Z
D
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds+
Z
I
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds




≥λ
β
1
Z
D
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)|h(s)|ds−λ
β
1
Z
I
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)|h(s)|ds
≥λ
β
1
Z
T
T
1
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)|h(s)|ds−
η(T−T
0
)
T
0
λ
β
1
Z
T
1
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)ds
≥λ
β
1
(T−T
1
)
α
1
−1
E
(n)
α
0
,α
1
(T−s)

Z
T
T
1
|h(s)|ds−
η(T−T
0
)
T
0
Z
T
1
0
ds

≥λ
β
1
(T−T
1
)
α
1
−1
E
(n)
α
0
,α
1
(T−s)

Z
T
T
1
|h(s)|ds+
Z
T
T
0
ηds−
ηT
1
(T−T
0
)
T
0

≥λ
β
1
(T−T
1
)
α
1
−1
E
(C
3
)
α
0
,α
1
(T−s)

Z
T
T
1
|h(s)|ds+
η(T−T
0
)(T
0
−T
1
)
T
0

.
(10)
λ
n
≤C
3
,ÏL©ÜÈ©·‚k




λ
β
n
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds




=




h(0)λ
β
n
T
α
1
E
(n)
α
0
,1+α
1
(T)+
Z
T
0
h
s
(s)λ
β
n
(T−s)
α
1
E
(n)
α
0
,1+α
1
(T−s)




≥|h(0)|λ
β
n
T
α
1
E
(n)
α
0
,1+α
1
(T)−
Z
T
0
λ
β
n
(T−s)
α
1
E
(n)
α
0
,1+α
1
(T−s)|h
s
(s)|ds
≥|h(0)|λ
β
n
T
α
1
E
(n)
α
0
,1+α
1
(T)−q
Z
T
0
λ
β
n
(T−s)
α
1
E
(n)
α
0
,1+α
1
(T−s)ds
= |h(0)|λ
β
n
T
α
1
E
(n)
α
0
,1+α
1
(T)+qλ
β
n
T
α
1
+1
E
(n)
α
0
,2+α
1
(T)ds.
(11)
?˜Ú,·‚k




λ
β
n
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds




≥
|h(0)|λ
β
n
T
α
1
C
λ
β
n
T
α
1
+
qT
α
1
+1
Cλ
β
n
λ
β
n
T
α
1
≥C|h(0)|+Cq
≥η.
(12)
DOI:10.12677/aam.2023.1262882867A^êÆ?Ð
…!
d(10)Ú(12),•3˜‡~êC
2
>0¦




λ
β
n
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds




≥C
2
,n= 1,2,···(13)
y..
y3·‚5y²½n3.1.
^HolderØª,·‚k
kfk
2
=
∞
X
n=1
hf,φ
n
i
2
=
∞
X
n=1

λ
2pβ
p+β
n
|hf,φ
n
i|
2β
p+β

λ
−2pβ
p+β
n
|hf,φ
n
i|
2p
p+β

≤
∞
X
n=1
λ
2p
n
|hf,φ
n
i|
2
!
β
p+β
∞
X
n=1
λ
−2β
n
|hf,φ
n
i|
2
!
p
p+β
≤E
2p
p+β



∞
X
n=1
hg,φ
n
i
2

λ
β
n
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds

2



p
p+β
.
(14)
dÚn3.2,•3˜‡~êC
1
>0¦
kfk
2
≤C
1
2
E
2p
p+β
kgk
2p
p+β
.(15)
Ïd,
kfk≤C
1
E
p
p+β
ε
p
p+β
.(16)
y..
52‡¯K(1)´¾.(1))XJ•3,ŒUØëY•6u ªàêâ.duh(t)3[0,T]
þ˜‡ëY¼ê,•3˜‡~êC
4
>0¦C
4
=sup
t∈[0,T]
|h(t)|<+∞.·‚k




Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds




≤C
4




Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)ds




= C
4
T
α
1
E
(n)
α
0
,1+α
1
(T)
≤
C
4
T
α
1
1+λ
β
n
T
α
1
≤
C
4
λ
β
n
.
(17)
Ïd

Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds

−1
≥
λ
β
n
C
4
.(18)
dλ
β
n
→∞,fØëY•6uêâ,‡¯K(1)´¾.
DOI:10.12677/aam.2023.1262882868A^êÆ?Ð
…!
4.këêÀ5KÚÂñ„Ý
3!¥,·‚JÑl¯K(4)%C¯K(1)ØO.·‚ lKzëêkÀ5K¥
Holder.ØO.nØ(J3e¡½n4.1¥•ã.
½n4.1h(t)÷vbH1.éb≥β,¯K(4)´·½.d,XJ¯Kf(1))÷v
kfk
p
≤E,p>0,E>ε,(19)
Úf
α
´¯K(4)),Ke•ã¤á:
(i)XJ0 <p<b,Kα=

ε
E

b
p+β
,•3˜‡~êC
2
¦
kf
α
−fk≤C
2
ε
p
p+β
E
β
p+β
.(20)
(ii)XJp≥b,Kα=

ε
E

b
p+β
,•3˜‡~êC
3
¦
kf
α
−fk≤C
3
ε
b
p+β
E
β
p+β
.(21)
Äk,·‚Jј(J5y²½n4.1.
Ún4.2éb≥β,¯K(4)´·½.d,XJf
α
∈D(A
b−β
),v(t) ∈D(A
b
),t∈[0,T),K•3˜
‡~êC
5
¦
kf
α
k≤C
5
α
−
β
b
kg
ε
k.
y†(6)aq,¯K(4))•3,)LˆªXe¤«:
v(t) =
∞
X
n=1

Z
t
0
(t−s)
α
1
−1
E
(n)
α
0
,α
1
(t−s)h(s)dshf
α
,φ
n
ids

φ
n
.
†Ún2.7aq,·‚k
hg
ε
,φ
n
i=
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)

(I+αA
b
)f
α
,φ
n

h(s)ds
= (I+αλ
b
n
)hf
α
,φ
n
i
Z
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds.
(22)
Ïd,3¯K(4)¥f
α
LˆªXe:
f
α
=
∞
X
n=1
hg
ε
,φ
n
iφ
n
(I+αλ
β
n
)
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds
,(23)
Ú
v(t) =
∞
X
n=1
R
t
0
(t−s)
α
1
−1
E
(n)
α
0
,α
1
(t−s)h(s)dshg
ε
,φ
n
iφ
n
(I+αλ
b
n
)
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds
.(24)
DOI:10.12677/aam.2023.1262882869A^êÆ?Ð
…!
d(13),·‚k
1
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds
=
λ
β
n
λ
β
n
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds
≤
λ
β
n
C
3
(25)
l(18)Ú(25),·‚
λ
β
n
C
4
≤
1
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds
≤
λ
β
n
C
2
(26)
?˜Ú,d(26)·‚k
kf
α
k
2
b−β
=
∞
X
n=1
λ
2(b−β)
n
hg
ε
,φ
n
i
2

(1+αλ
b
n
)
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds

2
≤
∞
X
n=1
λ
2(b−β)
n
λ
2β
n
hg
ε
,φ
n
i
2
C
2
2
(1+αλ
b
n
)
2
≤
kg
ε
k
2
C
2
2
α
2
<+∞.
(27)
ùÒy²f
α
∈D(A
b−β
).Ó,·‚k±eO
kv(t)k
2
b
≤
∞
X
n=1
λ
2b
n
λ
2β
n

R
t
0
(t−s)
α
1
−1
E
(n)
α
0
,α
1
(t−s)h(s)ds

2
hg
ε
,φ
n
i
2
C
2
2
(1+αλ
b
n
)
2
≤
∞
X
n=1
λ
2β
n

R
t
0
(t−s)
α
1
−1
E
(n)
α
0
,α
1
(t−s)h(s)ds

2
hg
ε
,φ
n
i
2
C
2
2
α
2
≤
∞
X
n=1

−t
α
1
E
(n)
α
0
,1+α
1
(t)

2
λ
2β
n
hg
ε
,φ
n
i
2
C
2
2
α
2
≤

−C
1
t
α
1
1+λ
β
n
t
α
1

2
λ
2β
n
hg
ε
,φ
n
i
2
C
2
2
α
2
≤
C
1
2
kg
ε
k
2
b
C
2
2
α
2
<+∞.
(28)
Ïdv(t) ∈D(A
b
).,˜•¡
kf
α
k
2
=
∞
X
n=1
hg
ε
,φ
n
i
2

(1+αλ
b
n
)
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds

2
.(29)
DOI:10.12677/aam.2023.1262882870A^êÆ?Ð
…!
éb>β,^YoungØª,·‚k
1+αλ
b
n
≥
b−β
b
·1
b
b−β
+
β
b

α
β
b
λ
β
n

b
β
≥α
β
b
λ
β
n
,(30)
½
1+αλ
b
n
≥α
β
b
λ
β
n
.(31)
é¤kb≥β.
ddŒ„,
kf
α
k
2
≤
∞
X
n=1
α
−
2β
b
hg
ε
,φ
n
i
2

λ
β
n
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds

2
.(32)
dÚn3.3Ú(32),•3˜‡~êC
5
¦
kf
α
k≤C
5
α
−
β
b
kg
ε
k.(33)
y..
3e©¥,·‚^f
1α
5L«e¡¯K)











m
P
j=1
q
j
∂
α
j
0
+
ω(x,t)+A
β
ω(x,t) = (I+αA
b
)f
1α
h(t),(x,t) ∈Ω
T
:= Ω×I,
ω(x,0) = 0,x∈Ω,
ω(x,t) = 0,(x,t) ∈∂Ω×I,
(34)
t= Tž,kω(x,T) = g.(34))LˆªXe:
kf
1α
k
2
=
∞
X
n=1
hg,φ
n
i
2
φ
n
(1+αλ
b
n
)
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds
.(35)
Ún4.3XJf
1α
´¯K(34))Úf
α
´¯K(4)),K
kf
α
−f
1α
k≤C
5
α
−
β
b
ε.
y·‚wf
α
−f
1α
´¯K(4)),•Ò´^g
ε
−g“Og
ε
.^Ún4.2,·‚k
kf
α
−f
1α
k≤C
5
α
−
β
b
kg
ε
−gk≤C
5
α
−
β
b
ε.
y..
Ún4.4XJé˜~êp,E>0,kfk
p
≤E,K•3˜‡~êC
8
>0¦
kf−f
1α
k≤
(
α
β
b
,p<b,
C
6
αE,p≥b.
DOI:10.12677/aam.2023.1262882871A^êÆ?Ð
…!
y·‚k
kf−f
1α
k
2
=
∞
X
n=1
hf−f
1α
,φ
n
i
2
=
∞
X
n=1



hg,φ
n
i
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds
−
hg,φ
n
i
(1+αλ
b
n
)
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds



2
=
∞
X
n=1
α
2
λ
2b
n
hg,φ
n
i
2

(1+αλ
b
n
)
R
T
0
(T−s)
α
1
−1
E
(n)
α
0
,α
1
(T−s)h(s)ds

2
=
∞
X
n=1

αλ
b−p
n
1+αλ
b
n

2
λ
2p
n
hf,φ
n
i
2
.
(36)
XJp<b,^YoungØª,·‚k
1+αλ
b
n
≥
p
b
·1
b
p
+
b−p
b

α
b−p
b
λ
b−p
n

b
b−p
≥α
b−p
b
λ
b−p
n
.(37)
Ïd,
kf
α
−f
1α
k
2
≤
∞
X
n=1
α
2p
b
λ
2p
n
hf,φ
n
i
2
≤α
2p
b
E
2
.(38)
XJp≥b,K
kf
α
−f
1α
k
2
≤
∞
X
n=1
α
2
λ
2(b−p)
1
λ
2p
n
hf,φ
n
i
2
≤λ
2(b−p)
1
α
2
E
2
.(39)
y..
y3·‚5y²½n4.1.·‚Äk‰Ñ½n4.11˜Ü©y²L§.
yXJp<b,dÚn4.3ÚÚn4.4,·‚k
kf−f
α
k≤kf−f
1α
k+kf
α
−f
1α
k
≤α
p
b
E+C
5
α
−
β
b
ε.
(40)
Àα=

ε
E

b
p+β
,•3˜‡~êC
2
>0¦
kf−f
α
k≤C
2
ε
p
p+β
E
β
p+β
.(41)
y..
X·‚y²½n4.11Ü©.
yXJp≥b,·‚k
kf−f
α
k≤kf−f
1α
k+kf
α
−f
1α
k
≤C
6
αE+C
5
α
−
β
b
ε.
(42)
DOI:10.12677/aam.2023.1262882872A^êÆ?Ð
…!
Àα=

ε
E

b
b+β
,•3˜‡~êC
3
>0¦
kf−f
α
k≤C
3
ε
b
b+β
E
β
b+β
.(43)
½n4.11Ü©Òy²¤.Ïd,½n4.1y..
5.o(†Ð"
©•Ä|^[_•{¦)õ‘žm©ê*Ñ•§,3•§¥O\˜‡6Ä,¦•
§·½.ÄuMittag-Leffler¼ê5Ÿ,3kKzëêÀJ5Ke,·‚Kz)Ø
O.ÏL©zuy,éuü‘žm©ê*Ñ•§‡¯KïĹ•´L,´éõ‘ž
m©ê*Ñ•§‡¯KïÄ•êØõ,éd·‚3c<Ä:þé¯K–\[_Kz•{,ò
ü‘[_‡¥-‡(Jí2õ‘[_‡¯K¥,¿…‡¯K^‡-½5
ÚKz)Lˆ/ª.éuõ‘žm©ê*Ñ•§,©=?n‚5¯K,éuš‚5‘
¯K´ÄäkÓÂñ(Jk–?˜ÚïÄ,…T•{´ÄU?nõ‘žm©ê* Ñ•§Ó
ž‡üЊÚ‘¯K„™Œ•,I‡?˜ÚïÄ.
ë•©z
[1]Ionescu,C.-M.,Lopes,A.,Copot,D.,Machado,J.A.T.andBates,J.H.T.(2017)TheRoleof
FractionalCalculusin Modelling BiologicalPhenomena.Communicationsin Nonlinear Science
andNumericalSimulation,51,141-159.https://doi.org/10.1016/j.cnsns.2017.04.001
[2]Hilfer,R.(2000)ApplicationsofFractionalCalculusinPhysics.WorldScientific,Singapore.
https://doi.org/10.1142/3779
[3]Laskin,N.(2017)TimeFractionalQuantumMechanics.Chaos,Solitons&Fractals,102,
16-28.https://doi.org/10.1016/j.chaos.2017.04.010
[4]Tarasov,V.E.(2010)FractionalDynamics:ApplicationsofFractionalCalculustoDynamics
ofParticles,FieldsandMedia.Springer-Verlag,Beijing.
[5]Machado,J.A.T.andLopes,A.M.(2016)RelativeFractionalDynamicsofStockMarkets.
NonlinearDynamics,29,1613-1619.https://doi.org/10.1007/s11071-016-2980-1
[6]Jin,B.andRundell,W.(2015)ATutorialonInverseProblemsforAnomalousDiffusionPro-
cesses. InverseProblems, 31,Article 035003. https://doi.org/10.1088/0266-5611/31/3/035003
[7]Caputo,M.,Carcione,J.andBotelho,M.(2015)ModelingExtreme-EventPrecursorswith
theFractionalDiffusionEquation.FractionalCalculusandAppliedAnalysis,18,208-222.
https://doi.org/10.1515/fca-2015-0014
[8]Weiss,G. (1994)Aspectsand Applicationsof theRandom Walk.North-Holland,Amsterdam.
DOI:10.12677/aam.2023.1262882873A^êÆ?Ð
…!
[9]Podlubny,I.(1999)FractionalDifferentialEquations:AnIntroductiontoFractionalDeriva-
tives,FractionalDifferentialEquations,toMethodsofTheirSolutionandSomeofTheirAp-
plications. In:MathematicsinScienceandEngineering, Vol. 198, AcademicPress, Cambridge,
MA.
[10]Zhang,Y.andXu,X.(2011)InverseSourceProblemforaFractionalDiffusionEquation.
InverseProblems,27,Article035010.https://doi.org/10.1088/0266-5611/27/3/035010
[11]Wei, T., Sun,L.L. andLi, Y.S.(2016) Uniquenessfor anInverseSpace-DependentSource Term
in aMulti-DimensionalTime-Fractional DiffusionEquation.AppliedMathematicsLetters, 61,
108-113.https://doi.org/10.1016/j.aml.2016.05.004
[12]Wei,T.andWang,J.G.(2014)AModifiedQuasi-BoundaryValueMethodfortheBackward
Time-Fractional Diffusion Problem. ESAIM:MathematicalModellingandNumericalAnalysis,
78,95-111.https://doi.org/10.1016/j.apnum.2013.12.002
[13]Yang,F.,Fu,J.L.,Fan,P.andLi,X.X. (2021)FractionalLandweberIterativeRegularization
MethodforIdentifyingtheUnknownSourceoftheTime-FractionalDiffusionProblem.Acta
ApplicandaeMathematicae,175,ArticleNo.13.https://doi.org/10.1007/s10440-021-00442-1
[14]Sun,C.L.andLiu,J.J.(2020)AnInverseSourceProblemforDistributedOrderTime-
FractionalDiffusionEquation.InverseProblems,36,Article055008.
https://doi.org/10.1088/1361-6420/ab762c
[15]Zhang,M.M.andLiu,J.J.(2021)OntheSimultaneousReconstructionofBoundaryRobin
CoefficientandInternalSourceinaSlowDiffusionSystem.InverseProblems,37,Article
075008.
[16]Liu,J.J.andYamamoto,M.(2010)ABackwardProblemfortheTime-FractionalDiffusion
Equation.ApplicableAnalysis,89,1769-1788.https://doi.org/10.1080/00036810903479731
[17]Cheng,J.,Nakagawa,J.,Yamamoto,M.andYamazaki,T.(2009)UniquenessinanInverse
ProblemforaOne-DimensionalFractionalDiffusionEquation.InverseProblems,25,Article
115002.https://doi.org/10.1088/0266-5611/25/11/115002
[18]Li, Z.Y.,Liu, Y.K.and Yamamoto, M.(2015) Initial-BoundaryValue Problemsfor Multi-Term
Time-Fractional Diffusion Equationswith PositiveConstant Coefficients.AppliedMathematics
andComputation,257,381-397.https://doi.org/10.1016/j.amc.2014.11.073
[19]Wang,J.-G. andWei,T. (2014)AnIterative MethodforBackwardTime-FractionalDiffusion
Problem.NumericalMethodsforPartialDifferentialEquations,30,2029-2041.
https://doi.org/10.1002/num.21887
[20]Wang, J.G., Zhou,Y.B.and Wei, T.(2013) APosterioriRegularizationParameterChoice Rule
fortheQuasi-BoundaryValueMethodfortheBackwardTime-FractionalDiffusionProblem.
AppliedMathematicsLetters,26,741-747.https://doi.org/10.1016/j.aml.2013.02.006
[21]4U.Ø·½¯KKz•{9A^[M].®:‰ÆÑ‡,2005.
DOI:10.12677/aam.2023.1262882874A^êÆ?Ð
…!
[22]Bazhlekova,E.(2013)PropertiesoftheFundamentalandtheImpulse-ResponseSolutionsof
Multi-TermFractionalDifferentialEquations.ComplexAnalysisandApplications.13,Sofia,
31October-2November2013,55-64.
[23]Sun,L.L.,Li,Y.S.andZhang,Y.(2021)SimultaneousInversionofthePotentialTermand
theFractional OrdersinaMulti-TermTime-Fractional DiffusionEquation.InverseProblems,
37,Article055007.https://doi.org/10.1088/1361-6420/abf162
DOI:10.12677/aam.2023.1262882875A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.