设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(6),1728-1743
PublishedOnlineJune2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.136177
iù¥¡þXd'XE9ÙA^
½½½ŒŒŒ===
1,2
§§§[[[wwwwww
1
§§§‘‘‘“““²²²
1
§§§¢¢¢sss
1,3
§§§©©©¥¥¥
1
1
2ܬxŒÆ§êƆÔnÆ§2ÜHw
2
ô€=p?¥Æ§2Àô€
3
2ܬx“‰Æ§ên†>f&Eó§Æ§2܆
ÂvFϵ2023c521F¶¹^Fϵ2023c622F¶uÙFϵ2023c629F
Á‡
©ïÄE˜‘ëÏE)Û6/þ˜AÏiù¡§•)E˜‘K˜mCP
1
!*¿E²
¡C
∞
ÚE¥¡S
2
"3XNÚVXN¿Âe§ùn‡;.iù¡´Xd"?
3HopfNe§íÑS
3
†CP
1
Xd"ÄuFrankelߎ§?ØE˜‘K˜mCP
1

;K¨ahler6/þ'uUþ•zXN¯K"
'…c
iù¡§XN§Xd§HopfN§X4zN
ConstructionofHolomorphicEquivalence
RelationsonRiemannianSpheresandTheir
Applications
YulanLv
1,2
,LiningGan
1
,ZhimingHuang
1
,QiuhuaYang
1,3
,WeijunLu
1
1
CollegeofMathematicsandPhysics,GuangxiMinzuUniversity,NanningGuangxi
2
JiangmenPeiyingSeniorHighSchool,JiangmenGuangdong
3
CollegeofMathematicsandElectronicInformationEngineering,GuangxiNormalUniversityfor
Nationalities,ChongzuoGuangxi
Received:May21
st
,2023;accepted:Jun.22
nd
,2023;published:Jun.29
th
,2023
©ÙÚ^:½Œ=,[ww,‘“²,[ww,¢s,©¥.iù¥¡þXd'XE9ÙA^[J].nØêÆ,
2023,13(6):1728-1743.DOI:10.12677/pm.2023.136177
½Œ=
Abstract
Inthispaper,westudysomespecialRiemannsurfacesoncomplexone-dimensional
connectedcomplexanalyticmanifolds,includingcomplexone-dimensionalprojection
spaceCP
1
,extendedcomplexplaneC
∞
andcomplexsphereS
2
.Inthesenseofholo-
morphicmappingandbiholomorphicmapping,thesethreetypicalRiemannsurfaces
areholomorphicequivalent.Furthermore,underHopfmapping,theholomorphice-
quivalencebetweenS
3
andCP
1
isderived.BasedonFrankle’sconjecture,theproblem
ofholomorphicmappingofenergyminimizationoncomplexone-dimensionalprojec-
tivespacesCP
1
tocompactK¨ahlermanifoldsisdiscussed.
Keywords
RiemannSurfaces,HolomorphicMapping,HolomorphicEquivalence,HopfMapping,
HolomorphicMinimizationMapping
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
iù¡´dIêÆ[ËM#iù319-VJÑ˜«E6/,2•A^uy“êÆ!Ô
nÆ!ó§Æ+•.†îAp˜mƒ',iù¡äk•\´LAÛ(ÚÿÀ5Ÿ,3ØÓ+
•¥Ñk2•A^ÚïÄ.iù¥¡K´˜aAÏiù¡,Ù-Ç•~ê,´˜«šîAp
AÛN.gl§Ú\AÛÆÚE©Û¥±5,®²¤•˜‡9€ïÄ+•,áÚ¯õ
Æö'5Ú&¢.iù¡ïÄØ=´üEC¼êØÄ¯Kƒ˜,…†¯õy“êÆ©
|k;—éX[1],iù¡3Ôn¥A^2•.3þf寥,EK‚þ:´1f4z,g
^•1/2-æfâfÚ˜„âfg^g,Š.iù¥¡í••UN¥¡2
ƒéØ..3uØ¥,u-.¡´iù-¡,iù¥¡Š••{üiù-¡k-‡Š
^[2].d+Š^pûNh: S
3
→S
3
/S
1
(
∼
=
S
2
)6C<‚ƒcép‘¥¡˜m•$‘¥¡˜
mëYC††~ŠNÓÔߎ¿ME˜‡#ïÄ••.
dHopfn‘zéu,<‚uy•kp‘˜mn‘zA5[3].A^NÚNì
±9Kobayashi-Ochiai'uEK˜mA[4],—Î,Ú£¤Ð[5]é?Û‘êy²Ͷ
Frankelߎ:?ÛäkV¡-Ç;K¨ahler6/˜½VXduEK˜mCP
n
.
3¦‚óŠƒ,Mok[6]òFrankelߎí2šK-Çœ/,=2ÂFrankelߎ:?¿äk
DOI:10.12677/pm.2023.1361771729nØêÆ
½Œ=
šKXV¡ -Ç^‡ØŒ;K¨ahler6/½öåu˜‡Hermitian願m,½öVX
duEÝK˜mCP
n
.iù¡´˜«äkE²¡ÛÜ5ŸÿÀ6/,;K¨ahler6/´˜«ä
kE(Úi ùÝþÿÀ6/.3EAÛÆ¥,Xd´•ü‡E6/3,«¿ÂeäkƒÓ
E(.Ïd,iù¡Xd5Ÿ3;K¨ahler6/Uþ•z¥äk-‡¿Â,§¦·‚
Œ±|^EAÛ•{5NiùÝþ,l¦)Uþ•z¯K.
'uiù-¡˜‡-‡ïÄ´§‚ ƒmXNE[7,8].©liù-¡VgÑu,
ÏLEiù-¡ƒmN,¦TNÛÜ‹IL«÷vXN^‡,…_N¤á,=
÷vVXN,líÑn‡iù-¡ƒm´Xd.3EXNL§¥,•Œæ
NÒ´ü‡iù-¡ÛÜ‹Iãkƒm‹I=†.éE˜‘ÝK˜mCP
1
,lûÿÀÑu,•Ä
XÛ½Âm8,9daœ¹[9],I‡éda“L?1?n,¤±ü‡iù-¡ƒm
‹IéAÒI‡˜E|.éu‘¥¡S
2
,©|©/|^3‘¥¡þn‡‹I7L÷v
²•Ú•1ù˜5Ÿ,lEÑÎÜý ÏŽ{XN .HopfN´d˜‡n‘zN†ü‡
XNEÜ,?3HopfNe,íÑS
3
†CP
1
Xd.•,éFrankelߎE˜‘œ
/,‰ÑV¡-Ç½Â,ÏLOŽUþ1C©Nf: (CP
1
,ω)→(M,h).y²
3?¿Uþ•zþE˜‘K˜mCP
1
;K¨ahler6/þXN.
2.ƒ'•£
2.1.iù¡
½Â2.1.1[10]S´˜‡ëÏHausdorff˜m,\þ˜q{(U
α
,ϕ
α
)}
α∈A
,÷ve^‡µ
£1¤z‡U
α
´S˜‡m8,¤kU
α
|¤SmCX,=S⊂
S
α∈A
U
α
.
£2¤V
α
•C¥m8,ϕ
α
: U
α
→V
α
•Ó.
£3¤eU
α
T
U
β
=∅,Kf
αβ
=ϕ
α
◦ϕ
β
: ϕ
β
(U
α
∩U
β
) →ϕ
α
(U
α
∩U
β
)´C¥m8˜‡XN.
K¡S´iù-¡.
½Â¥mCX¡•ÛÜ‹ICX,¡{(U
α
,ϕ
α
)}
α∈A
•SÛÜ‹Ik,U
α
¡•S˜‡‹I
•,ϕ
α
¡•U
α
þ‹IN,ϕ
α
(m)(m∈U
α
)•m:ÛÜ‹I,¡f
αβ
•=†¼ê.
‰Ñ±eiù¡~f.
·K2.1.2‘¥¡
S
2
=

(x,y,z) ∈R
3
|x
2
+y
2
+z
2
= 1

.
´˜‡iù-¡.
y²-
U
1
=S
2
−{(0,0,1)}⊂S
2
,U
2
=S
2
−{(0,0,−1)}⊂S
2
.(2.1)
KU
3
=S
2
−{(0,0,1)}−{(0,0,−1)}⊂S
2
.
‰S
2
˜‡ÿÀ(τ
S
2
={∅,S
2
,U
1
,U
2
,U
3
}.ùžU
1
,U
2
,U
3
´S
2
m8,S
2
´ëÏ.
DOI:10.12677/pm.2023.1361771730nØêÆ
½Œ=
•ÄN:
ϕ
1
: U
1
→C.(x,y,z) 7→w= ϕ
1
(x,y,z) =
x+iy
1−z
,z∈[−1,1).(2.2)
ϕ
2
: U
2
→C.(x,y,z) 7→u= ϕ
2
(x,y,z) =
x−iy
1+z
,z∈(−1,1].(2.3)
´yϕ
1
,ϕ
2
´V,ϕ
1
,ϕ
2
,ϕ
−1
1
,ϕ
−1
2
´ëY,ϕ
1
,ϕ
2
´Ó.
ϕ
1
,ϕ
2
ƒm=†Nµ
ϕ
2
◦ϕ
−1
1
: C→C.w7→u= ϕ
2
◦ϕ
−1
1
(w).
l
u= f
21
(w) = ϕ
2
◦ϕ
−1
1
(
x+iy
1−z
)=ϕ
2
(x,y,z) =
x
1+z
−
iy
1+z
=
1−z
1+z
(
x
1−z
−
iy
1−z
) =
1
w·¯w
¯w=
1
w
.(2.4)
d£2.4¤Œ
∂u
∂¯w
=
∂(
1
w
)
∂¯w
= 0.
u= f
21
(w) =
1
w
´'uwX¼ê.Ïd,S
2
´˜‡iù-¡.
·K2.1.3*¿E²¡´E²¡Údá:¤²¡,=
C
∞
=C∪{∞}.
´˜‡iù¡.
y²-
f
U
1
=C
∞
−{∞}=C,
f
U
2
=C
∞
−{0}.(2.5)
K
f
U
3
=C
∞
−{∞}−{0}=C−{0}.
‰C
∞
˜‡ÿÀ(τ
C
∞
=
n
∅,C
∞
,
f
U
1
,
f
U
2
,
f
U
3
o
.ùž
f
U
1
,
f
U
2
,
f
U
3
´C
∞
m8,C
∞
´ëÏ.
•ÄNµ
φ
1
:
f
U
1
→C.z7→w= φ
1
(z) = z.(2.6)
φ
2
:
f
U
2
→C.z7→u= φ
2
(z) =



1
z
,z6= ∞.
0,z= ∞.
(2.7)
DOI:10.12677/pm.2023.1361771731nØêÆ
½Œ=
´yφ
1
,φ
2
´V,φ
1
,φ
2
,φ
−1
1
,φ
−1
2
´ëY,φ
1
,φ
2
´Ó.
φ
1
,φ
2
ƒm=†Nµ
φ
2
◦φ
−1
1
: C→C.w7→u= ϕ
2
◦ϕ
−1
1
(w).
l
u=g
21
(w) = φ
2
◦φ
−1
1
(z)=φ
2
(z) =
1
z
=
1
w
(2.8)
d£2.8¤Œ
∂u
∂w
=
∂(
1
w
)
∂w
= 0.
u= g
21
(w) =
1
w
´'uwX¼ê.Ïd,C
∞
´˜‡iù-¡.
·K2.1.4E˜‘ÝK˜mCP
1
=C
2
−{0}/∼þ½ÂûNπ:C
2
−{0}→CP
1
(z
0
,z
1
) 7→π(z
0
,z
1
) = (z
0
,z
1
)/∼= [(z
0
,z
1
)].
´÷.½ÂûÿÀµ
τ
C
2
−{0}
= τ
E
C
2
∩(C
2
−{0}),τ
CP
1
=

π(U)|∀U∈τ
C
2
−{0}

.
…CP
1
´˜‡iù-¡.
y²eU⊂C
2
−{0},K½Âπ(U) = {π(z
0
,z
1
) = [(z
0
,z
1
)]|∀(z
0
,z
1
) ∈U}•CP
1
m8.-
V
1
=

[(z
0
,z
1
)] ∈CP
1
|(z
0
,z
1
) ∈C
2
−{0},z
0
6= 0

,(2.9)
V
2
=

[(z
0
,z
1
)] ∈CP
1
|(z
0
,z
1
) ∈C
2
−{0},z
1
6= 0

,(2.10)
V
1
∪V
2
= CP
1
,V
1
∩V
2
6= ∅.
V
1
,V
2
•CP
1
¥m8.
•ÄN:
ψ
1
: V
1
→C.[(z
0
,z
1
)] 7→w= ψ
1
(z
0
,z
1
) = ψ
1
[(z
0
,z
1
)] =
z
1
z
0
,(2.11)
ψ
2
: V
2
→C.[(z
0
,z
1
)] 7→u= ψ
2
(z
0
,z
1
) = ψ
2
[(z
0
,z
1
)] =
z
0
z
1
.(2.12)
´yψ
1
,ψ
2
´V,ψ
1
,ψ
2
,ψ
−1
1
,ψ
−1
2
´ëY,ψ
1
,ψ
2
´Ó.
ψ
1
,ψ
2
ƒm=£N:
ψ
2
◦ψ
-1
1
: ψ
1
(V
1
∩V
2
) →ψ
2
(V
1
∩V
2
),w7→u= ψ
2
◦ψ
-1
1
(w),
DOI:10.12677/pm.2023.1361771732nØêÆ
½Œ=
l
u= ψ
2
◦ψ
-1
1
(w) = ψ
2
◦ψ
-1
1
(
z
1
z
0
) = ψ
2
([(z
0
,z
1
)]) =
z
0
z
1
=
1
z
1
z
0
=
1
w
.(2.13)
d£2.13¤Œ
∂u
∂w
=
∂(
1
w
)
∂w
= 0.
u=
1
w
´'uwX¼ê.ÏdCP
1
•iù-¡.
±þn‡~fš~ƒq,¢Sþùn‡iù-¡´Xd,äNy²3e˜!‰Ñ.
2.2.XN†Xd
XÃAO(²,b½iù-¡´ëÏ,…=†¼êo´X.•dÚ\iù¡ƒmXN
ÚXdVg.
½Â2.2.1M!N´ü‡iù-¡,©O±{(U
α
,ϕ
α
)}
α∈A
,{(V
β
,ψ
β
)}
β∈B
•ÙÛÜ‹Ik,
f: M→N•ëYN,XJéz˜éÛÜ‹Ik,¦f(U
α
) ⊂V
β
,f
−1
(V
β
)∩U6= ∅.…EÜN
ψ
β
◦f◦ϕ
−1
α
: ϕ
α
(U
α
∩V
−1
β
) →ψ
β
(V
β
)
´XN,K¡f: M→N•XN.Ù¥,ψ
β
◦f◦ϕ
−1
α
¡•fÛÜL«.
½Â2.2.2M!N´ü‡iù-¡,XJf: M→N,g: N→Mþ•XN,…
g◦f= Id
M
,f◦g= Id
N
.
K¡f½g•VXN,¡M†N•Xd.
2.3.Hopfn‘z
½Â2.3.1‘kn‘S
1
∼
=
U(1)
∼
=
SO
2
NP:S
2n+1
→CP
n
.lπ
1
(S
1
)
∼
=
Z,π
i
(S
1
)=0,
i>1,·‚Œ±ln‘zÜS¥±eÓ'Xµ
π
i
(S
2n+1
)
∼
=
π
i
(CP
n
),i6= 2,
π
2n+1
(S
2n+1
)
∼
=
π
2n+1
(CP
n
)
∼
=
Z,
π
2
(CP
2
)
∼
=
Z
∼
=
π
1
(S
1
).
½Â2.3.2¡Nf:X→Y´˜‡n‘z,XJéu.˜mY?¿Nϕ=ϕ
0
?ÛÓ
ÔΦ = {ϕ
t
}: K×I→YÑ•3,‡ÓÔ
e
Φ = {eϕ
t
}: K×I→XCXΦ.Ù¥,˜mY¡•.˜m,
X¡•n‘z˜m.”F
y
= f
−1
(y)¡•n‘,NfK¡•K.
DOI:10.12677/pm.2023.1361771733nØêÆ
½Œ=
3.Xd'XE
3.1.iù¥¡ƒmXd
3ù˜!¥,·‚•EÑÎÜýÏŽ {XN,•Œ¯K´)ûü‡iù¡ÛÜ‹
Iãkƒm‹I=†.3XNÚVXN¿Âe,y²ü‡iù¡þXd'X.
·K3.1‘¥¡S
2
={(x,y,z) ∈R
3
|x
2
+y
2
+z
2
= 1}†*¿E²¡C
∞
=C∪{∞}Xd.
y²‘¥¡S
2
E)Û(•{(U
1
,ϕ
1
),(U
2
,ϕ
2
)},d·K2.1.2¥ª£2.1¤!£2.2¤±9
£2.3¤‰Ñ.
*¿E²¡C
∞
= C∪{∞}˜‡E(•
n
(
f
U
1
,φ
1
),(
f
U
2
,φ
2
)
o
.d·K2.1.3¥ª£2.5¤!£2.6¤
±9£2.7¤‰Ñ.
ENf: S
2
→C
∞
.
(x,y,z) 7→w= f(x,y,z) =



x+iy
1−z
,(x,y,z) 6= (0,0,1).
∞,(x,y,z) = (0,0,1).
(3.1)
K´•f´V,Ù_N•g= f
−1
: C
∞
→S
2
.
w7→(x,y,z)= g(w) =



(
2Rew
|w|
2
+1
,
2Imw
|w|
2
+1
,
|w|
2
−1
|w|
2
+1
),w6= ∞.
(0,0,1),w= ∞.
(3.2)
1¤éuNf,©ü«œ¹5?1ÛÜ‹I•Ä.
e(x,y,z) = (0,0,1),Kf(0,0,1) = ∞.©O:(0,0,1) ∈U
2
,3S
2
ÛÜ)Ûãk(U
2
,ϕ
2
)
Ú∞3C
∞
ÛÜ)Ûãk(
f
U
2
,φ
2
),ùžfÛÜL«µ
f
f
22
= φ
2
◦f◦ϕ
−1
2
: ϕ
2
(U
2
∩f
−1
(
f
U
2
)) ⊂C→φ
2
(f(U
2
)∩
f
U
2
) ⊂C.u7→w=
f
f
22
(u).
(Ü£2.3¤!£2.7¤!£3.1¤,
w=
f
f
22
(u) = φ
2
◦f◦ϕ
−1
2
(u) = φ
2
◦f◦ϕ
−1
2
(
x−iy
1+z
) = φ
2
◦f(x,y,z)
=



φ
2
(
x+iy
1−z
),(x,y,z) 6= (0,0,1)
φ
2
(∞),(x,y,z) = (0,0,1)
=



1−z
x+iy
0
=



u
0
.
=w=
f
f
22
(u) = u.Œ„
∂w
∂u
=
∂(u)
∂(u)
= 0,w=
f
f
22
(w)'uu∈C´X¼ê.
e(x,y,z) 6= (0,0,1),Kf(x,y,z) =
x+iy
1−z
6= ∞,:(x,y,z)3S
2
ÛÜ‹Iãk(U
1
,ϕ
1
)ÚE
DOI:10.12677/pm.2023.1361771734nØêÆ
½Œ=
ê
x+iy
1−z
3C
∞
ÛÜ+•‹Iãk(
f
U
1
,φ
1
),KfÛÜL«•:
f
f
11
= φ
1
◦f◦ϕ
−1
1
: ϕ
1
(U
1
∩f
−1
(
f
U
1
)) ⊂C→φ
1
(f(U
1
)∩
f
U
1
) ⊂C.
w=
x+iy
1−z
7→u=
f
f
11
(w).
(Ü£2.2¤!£2.6¤!£3.1¤,
u=
f
f
11
(w) = φ
1
◦f◦ϕ
−1
1
(w) = φ
1
◦f◦ϕ
−1
1
(
x+iy
1−z
) = φ
1
◦f(x,y,z)
= φ
1
(
x+iy
1−z
) = id(
x+iy
1−z
) =
x+iy
1−z
= w.
=u=
f
f
11
(w) = w.u´
∂u
∂w
=
∂(w)
∂(w)
= 0,u=
f
f
11
(w)'uw∈C´X¼ê.
2¤éuNg,Ó©ü«œ¹?ص
ew=∞,Kg(w)=(0,0,1).ùž∞3C
∞
ÛÜ)Ûãk(
f
U
2
,φ
2
)Úg(∞)=(0,0,1)3S
2
Û
Ü)Ûãk(U
2
,ϕ
2
),gÛÜ‹IL«•:
fg
22
= ϕ
2
◦g◦φ
−1
2
: φ
2
(
f
U
2
∩f
−1
(U
2
)) →ϕ
2
(f(
f
U
2
)∩U
2
).w7→u=fg
22
(w).
(Ü£2.3¤!£2.7¤!£3.2¤,
u=fg
22
(w) = ϕ
2
◦g◦φ
−1
2
(w) =



ϕ
2
◦g◦φ
−1
2
(
x−iy
1+z
),w6= 0
ϕ
2
◦g◦φ
−1
2
(0),w= 0
=



ϕ
2
◦g(
x+iy
1−z
)
ϕ
2
◦g(∞)
=



ϕ
2
(x,y,z)
ϕ
2
(0,0,1)
=



w
0
.
Ù¥,w=
x−iy
1+z
,x
2
+y
2
+z
2
= 1,g(
x+iy
1−z
)=(x,y,z).Kk
1
w
=
1+z
x−iy
=
x+iy
1−z
.
Œ„,u=fg
22
(w) = w,ù´'uwX¼ê.
w3C
∞
ÛÜ‹Iãk(
f
U
1
,φ
1
)Úg(w)= (x,y,z)3S
2
ÛÜ‹Iãk(U
1
,ϕ
1
),gÛÜ‹
IL«•:
fg
11
= ϕ
1
◦g◦φ
−1
1
: φ
1
(
f
U
1
∩g
−1
(U
1
)) →ϕ
1
(g(
f
U
1
)∩U
1
).w7→u=fg
11
(w).
(Ü£2.2¤!£2.6¤!£3.2¤,
u=fg
11
(w) = ϕ
1
◦g◦φ
−1
1
(
x+iy
1−z
) = ϕ
1
◦g(
x+iy
1−z
) = ϕ
1
(x,y,z) =
x+iy
1−z
= w.
DOI:10.12677/pm.2023.1361771735nØêÆ
½Œ=
Œ„,fg
11
´XN.
nþ¤ã,•g= f
−1
•´XN,lf´˜‡VXN.
Ïd,S
2
†C
∞
´Xd.
·K3.2‘¥¡S
2
={(x,y,z) ∈R
3
|x
2
+y
2
+z
2
= 1}†E˜‘ÝK˜mCP
1
=C
2
−{0}/∼
Xd.
y²‘¥¡S
2
E)Û(•{(U
1
,ϕ
1
),(U
2
,ϕ
2
)},d·K2.1.2¥ª£2.1¤!£2.2¤±9
£2.3¤‰Ñ.
E˜‘ÝK˜mCP
1
g,ÝK
π: C
2
−{0}→CP
1
.(z
0
,z
1
) 7→π(z
0
,z
1
) = (z
0
,z
1
)/∼= [(z
0
,z
1
)].
ûÿÀ
∀A∈τ
E
C
2
−{0}
= τ
E
C
2
∩(C
2
−{0}),
½Âπ(A) = {π(z
0
,z
1
) ∈CP
1
|∀(z
0
,z
1
) ∈A}•CP
1
m8.=
τ=

π(A)|∀A∈τ
C
2
−{0}

.
E˜‘ÝK˜mCP
1
˜‡E)Û(•{(V
1
,ψ
1
),(V
2
,ψ
2
)}.d·K2.1.4¥ª£2.9¤-£2.12¤‰
Ñ.
ENF: CP
1
→S
2
,
[(z
0
,z
1
)] 7→F([(z
0
,z
1
)]) = (x,y,z) =














2Re
z
1
z
0





z
1
z
0





2
+1
,
2Im
z
1
z
0





z
1
z
0





2
+1
,





z
1
z
0





2
−1





z
1
z
0





2
+1



,z
0
6= 0.
(0,0,1),z
0
= 0.
(3.3)
KF´V.Ù_N•G= F
−1
: S
2
→CP
1
,
(x,y,z) 7→G(x,y,z) = [(z
0
,z
1
)] =



[(1−z,x+iy)],(x,y,z) 6= (0,0,1).
[(0,z
1
)],(x,y,z) = (0,0,1).
(3.4)
1¤éuNF,©ü«œ¹5?1ÛÜ‹I•Ä.
ez
0
=0ž,KF([(0,z
1
)])=(0,0,1)∈S
2
.du[(0,z
1
)]áuV
2
,ÛÜ‹Iãk(V
2
,ψ
2
)Ú
:(0,0,1)3S
2
ÛÜ‹Iãk(U
2
,ϕ
2
),ùžFÛÜL«µ
g
F
22
= ϕ
2
◦F◦ψ
−1
2
: ψ
2
(V
2
∩F
−1
(U
2
)) →ϕ
2
(F(V
2
)∩U
2
).w7→u=
g
F
22
(w).
DOI:10.12677/pm.2023.1361771736nØêÆ
½Œ=
(Ü£2.3¤!£2.12¤!£3.3¤,
u=
g
F
22
(w) = ϕ
2
◦F◦ψ
−1
2
(w)=



ϕ
2
◦F◦ψ
−1
2
(
z
0
z
1
),z
0
6= 0
ϕ
2
◦F◦ψ
−1
2
(
z
0
z
1
),z
0
= 0
=



ϕ
2
◦F([(z
0
,z
1
)])
ϕ
2
◦F([(0,z
1
)])
=











ϕ
2



2Re
z
1
z
0





z
1
z
0





2
+1
,
2Im
z
1
z
0





z
1
z
0





2
+1
,





z
1
z
0





2
−1





z
1
z
0





2
+1



ϕ
2
(0,0,1)
=



z
0
z
1
0
=



w
0
.
u´
∂u
∂w
=
∂(w)
∂(w)
= 0,
g
F
22
´XN.ez
0
6= 0ž,F([z
0
,z
1
]) 6= (0,0,1).[(z
0
,z
1
)]3CP
1
ÛÜ
‹Iãk(V
1
,ψ
1
)ÚS
2
ÛÜ‹Iãk(U
1
,ϕ
1
),ùžFÛÜL«µ
g
F
11
= ϕ
1
◦F◦ψ
−1
1
: ψ
1
(V
1
∩F
−1
(U
1
)) →ϕ
1
(F(V
1
)∩U
1
).u7→w=
g
F
11
(u).
(Ü£2.2¤!£2.11¤!£3.3¤,
w=
g
F
11
(u) = ϕ
1
◦F◦ψ
−1
1
(
z
1
z
0
) = ϕ
1
◦F([z
0
,z
1
])
= ϕ
1





2Re
z
1
z
0




z
1
z
0




2
+1
,
2Im
z
1
z
0




z
1
z
0




2
+1
,




z
1
z
0




2
−1




z
1
z
0




2
+1





=
x+iy
1−z
=
z
1
z
0
.
dw=
g
F
11
(u) = u•
g
F
11
´XN.
nþü«œ/,B•F: CP
1
→S
2
´XN.
2¤éuNG,Ó©ü«œ¹?ص
e(x,y,z) = (0,0,1)ž,KG(0,0,1) = [(0,z
1
)].ùž(0,0,1)3S
2
ÛÜ‹Iãk(U
2
,ϕ
2
)ÚCP
1

ÛÜ‹Iãk(V
2
,ψ
2
),GÛÜL«µ
g
G
22
= ψ
2
◦G◦ϕ
−1
2
: ϕ
2
(U
2
∩G
−1
(V
2
)) →ψ
2
(G(U
2
)∩V
2
).u7→w=
g
G
22
(u).
(Ü£2.3¤!£2.12¤!£3.4¤,
w=
g
G
22
(u) = ψ
2
◦G◦ϕ
−1
2
(u) =



ψ
2
◦G◦ϕ
−1
2
(
x−iy
1+z
),u6= 0
ψ
2
◦G◦ϕ
−1
2
(0),u= 0
=



ψ
2
◦G(x,−y,−z)
ψ
2
◦G(0,0,1)
=



ψ
2
([(1+z,x−iy)])
ψ
2
([(0,z
1
)])
=



1
u
0
.
ldw=
g
G
22
(u) =
1
u
•
g
G
22
´XN.
e(x,y,z) 6= (0,0,1)ž,KG(x,y,z) = [(z
0
,z
1
)] = [(1−z,x+iy)].S
2
ÛÜ‹Iãk(U
1
,ϕ
1
)
DOI:10.12677/pm.2023.1361771737nØêÆ
½Œ=
ÚCP
1
ÛÜ‹Iãk(V
1
,ψ
1
),GÛÜL«µ
g
G
11
= ψ
1
◦G◦ϕ
−1
1
: ϕ
1
(U
1
∩G
−1
(V
1
)) →ψ
1
(G(U
1
)∩V
1
).w7→u=
g
G
11
(w).
(Ü£2.2¤!£2.11¤!£3.4¤,
u=
g
G
11
(w) = ψ
1
◦G◦ϕ
−1
1
(w) = ψ
1
◦G◦ϕ
−1
1
(
x+iy
1−z
)
= ψ
1
◦G(x,y,z) = ψ
1
([(z
0
,z
1
)]) =
x+iy
1−z
= w.
ldw=
g
G
11
(u) = u•
g
G
12
´XN.
•,d1¤,2¤•F: CP
1
→S
2
•VXN,CP
1
†S
2
´Xd.
±þü‡·K´iù¡ƒmXdÄ¯¢,ÓnŒCP
1
†C
∞
•´Xd.3iù
-¡Ø¥,Xdiù-¡,Ó•˜‡iù-¡,Ú¡iù¥¡.
3.2.Hopfn‘zeXd
3!¥,‰ÑHopfn‘zeNÚN,diù¡ƒmXd'X,íÑn‘¥
¡S
3
3Hopfn‘z†E˜‘K˜mCP
1
ƒmXd.
·K3.3[11]3ÓÔnØ¥-‡HopfNh: S
3
→S
2
´NÚN.
y²S
3
= {(z
1
,z
2
) ∈C
2
||z
1
|
2
+|z
2
|
2
= 1},é∀(z
1
,z
2
) ∈S
2
,½Â
h(z
1
,z
2
) = (2Rez
1
z
2
,2Imz
1
z
2
,|z
1
|
2
−|z
2
|
2
).(3.5)
K
|h(z
1
,z
2
)|
2
= |2z
1
z
2
|
2
+



|z
1
|
2
−|z
2
|
2



2
= (2z
1
z
2
)·(2z
1
z
2
)+|z
1
|
4
−2|z
1
|
2
|z
2
|
2
+|z
2
|
4
=|z
1
|
4
+2|z
1
|
2
|z
2
|
2
+|z
2
|
4
=|z
1
|
2
+|z
2
|
2
2
= 1.
h(z
1
,z
2
)ü‡©þ¼ê
h
1
(z
1
,z
2
)=2z
1
z
2
= 2(x
1
+iy
1
)(x
2
−iy
2
)=2(x
1
x
2
+y
1
y
2
)+i(−x
1
y
2
+x
2
y
1
),
h
2
(z
1
,z
2
)=|z
1
|
2
−|z
2
|
2
=x
1
2
+y
1
2
−x
2
2
−y
2
2
.
Ñ´C
2
∼
=
R
4
þ2gàgNÚ¼ê.
l¯¢dn+1‡kgàgNÚõ‘ªf: R
n
→S
n
→R
n+1
,Kf3¥¡S
n
þ•›f|
S
n
= S
m
→
S
n
´NÚN•,h½ÂS
3
S
2
þNÚN.
DOI:10.12677/pm.2023.1361771738nØêÆ
½Œ=
ŠHopfn‘zN,π: S
3
→CP
1
,é∀(z
0
1
,z
0
2
) ∈S
3
,=


z
0
1


2
+


z
0
2


2
= 1.e∃λ∈C,|λ|=1,¦
(z
0
1
,z
0
2
)=λ(z
1
,z
2
).K¡(z
0
1
,z
0
2
)du(z
1
,z
2
).S
3
'uù‡d'Xû˜m•
CP
1
=C
2
−{0}/∼= {[(z
1,
z
2
)] = (z
1,
z
2
)/∼|∀(z
1,
z
2
) ∈C
2
−{0}}.
½ÂXNh
1
: CP
1
→C
∞
= C∪{∞}Xe:∀[(z
1,
z
2
)] ∈CP
1
,k
h
1
[(z
1
,z
2
)] =



z
1
z
2
,z
2
6= 0,
∞,z
2
=0.
(3.6)
d·K3.1,½ÂXNg: C
∞
→S
2
Xeµé∀z∈C
∞
,k
g(z) =



(
2Rez
|z|
2
+1
,
2Imz
|z|
2
+1
,
|z|
2
−1
|z|
2
+1
),z6= ∞
(0,0,1),z= ∞
(3.7)
Œ±wÑ,HopfN´d˜‡n‘zN†ü‡XNEÜ(J,=h= g◦h
1
◦π.
ddŒ,n‘¥¡S
3
3Hopfn‘z†CP
1
Xd.
4.E˜‘K˜mCP
1
XN¯K
Frankel3[12]¥QŠXeߎ:z‡;K¨ahler6/,XJ§XV-Ç•,@o§X
duEK˜mCP
n
[13].éuE˜‘œ/,!3?¿Uþ•zþ½ÂE˜‘K˜mCP
1
K¨ahler6/þXN,•d‰˜OóŠ.
CP
1
´äk½/(ωE˜‘K˜m,M´äkK¨ahlerÝþh;K¨ahler6/.
3(CP
1
,ω)Ú(M,h)XÛÜ‹Iþ,©Okµ
ω= λ
2
dω⊗d¯ω,h=
√
−1h
ij
dz
i
∧d¯z
j
.
Ù¥h
ij
=

∂
∂z
i
,
∂
∂¯z
j

.
é?¿1wNf: (CP
1
,ω) →(M,h),fUþ•¼•
E(f) =
Z
CP
1

∂f
∂ω
,
∂f
∂ω

√
−1dω∧d¯ω
=
Z
CP
1
∂f
i
∂ω
∂f
j
∂ω
+
∂f
i
∂¯ω
∂f
j
∂¯ω
!
h
ij
√
−1dω∧d¯ω.(4.1)
DOI:10.12677/pm.2023.1361771739nØêÆ
½Œ=
Ù¥,
∂f
i
∂ω
= f
i
ω
,
∂f
i
∂¯ω
= f
i
¯ω
.
∂f
∂ω
= f
∗

∂
∂ω

= f
i
ω
∂
∂z
i
+f
i
¯ω
∂
∂¯z
i
.
Ún4.1E(f)'uf´Œ‡,KkUþ1˜C©úª
E
0
(f)|
t=0
= −2
Z
CP
1

∂f
∂t
,
D
∂¯ω

∂f
∂ω

√
−1dω∧d¯ω.(4.2)
y²f(t) : CP
1
→M,t∈C,|t|≤ε´m˜Cþëêz1wNq,d£4.1¤k
E
0
(f) =
Z
CP
1
∂
∂t

∂f
∂ω
,
∂f
∂ω

√
−1dω∧d¯ω
=
Z
CP
1

∇
∂
∂t
∂f
∂ω
,
∂f
∂ω

+

∂f
∂ω
,∇
∂
∂
¯
t
∂f
∂ω

√
−1dω∧d¯ω
=
Z
CP
1

∇
∂
∂ω
∂f
∂t
,
∂f
∂ω

+

∂f
∂ω
,∇
∂
∂ω
∂f
∂
¯
t

√
−1dω∧d¯ω
=
Z
CP
1

∇
∂
∂ω
∂f
∂t
,
∂f
∂ω

+

∇
∂
∂ω
∂f
∂t
,
∂f
∂ω

√
−1dω∧d¯ω
=
Z
CP
1

∂
∂ω

∂f
∂t
,
∂f
∂ω

−

∂f
∂t
,∇
∂
∂¯ω
∂f
∂ω

+
∂
∂ω

∂f
∂t
,
∂f
∂ω

−

∂f
∂t
,∇
∂
∂¯ω
∂f
∂ω

√
−1dω∧d¯ω
= −2
Z
CP
1

∂f
∂t
,∇
∂
∂¯ω
∂f
∂ω

√
−1dω∧d¯ω.
f´NÚN,=f÷v
∇
∂
∂¯ω
∂f
∂ω
= 0.(4.3)
du
∂
2
f
i
∂ω∂¯ω
+Γ
i
kj
∂f
k
∂¯ω
∂f
j
∂ω
= 0.(4.4)
y3‡é1C©úª?1OŽ,…=E
0
(f) = 0ž,E
00
(f)âk¿Â
Ún4.2[14]f: (CP
1
,ω) →(M,h)´NÚN,KkUþ1C©úª
E
00
(f)|
t=0
= 2
Z
CP
1




∇
∂
∂ω
∂f
∂t




2
−

∂f
∂t
,R

∂f
∂t
,
∂f
∂¯ω

∂f
∂ω

√
−1dω∧d¯ω.(4.5)
DOI:10.12677/pm.2023.1361771740nØêÆ
½Œ=
y²dÚn4.1
E
00
(f) = −2
Z
CP
1
∂
∂t

∂f
∂t
,∇
∂
∂¯ω
∂f
∂ω

√
−1dω∧d¯ω
= −2
Z
CP
1

∂f
∂t
,∇
∂
∂t
∇
∂
∂¯ω
∂f
∂ω

√
−1dω∧d¯ω
= −2
Z
CP
1

∂f
∂t
,R

∂
∂t
,
∂
∂¯ω

∂f
∂ω

+

∂f
∂t
,∇
∂
∂¯ω
∇
∂
∂t
∂f
∂ω

√
−1dω∧d¯ω
= −2
Z
CP
1

∂f
∂t
,R

∂
∂t
,
∂
∂¯ω

∂f
∂ω

+
∂
∂ω

∂f
∂t
,∇
∂
∂t
∂f
∂ω

−

∇
∂
∂ω
∂f
∂t
,∇
∂
∂t
∂f
∂ω

√
−1dω∧d¯ω
= 2
Z
CP
1




∇
∂
∂ω
∂f
∂t




2
−

∂f
∂t
,R

∂f
∂t
,
∂f
∂¯ω

∂f
∂ω

√
−1dω∧d¯ω.
½Â4.3[15](M,h)´˜‡‘ên≥2;K¨ahler6/,é?¿š"•þ|X,Y∈T
1,0
M,
X,Y>= 0,K
R(X,
¯
X,Y,
¯
Y) >0
¡•K¨ahler6/þV¡-Ç.
½n4.4(M,h)´˜‡‘ên≥2;K¨ahler6/,äkV¡-Ç,K?¿Uþ•
zNf: (CP
1
,ω) →(M,h)7L´X½öÝX.
y²bUþ•zNfQØ´X,•Ø´ÝX.
5¿dimH
0
(CP
1
,TCP
1
) = 3,Œ±CP
1
š"X•þv
∂
∂ω
,ü‡Mþš0£1,0¤.
•þ|
X=

f
∗
(v
∂
∂ω
)

(1,0)
= v
∂f
i
∂ω
∂
∂z
i
,Y=

f
∗
(v
∂
∂ω
)

(1,0)
=¯v
∂f
i
∂¯ω
∂
∂z
i
.
f´NÚN,÷v£4.4¤,Kk
∇
∂
∂¯ω
X= ∇
∂
∂¯ω

v
∂f
i
∂ω
∂
∂z
i

= v

∇
∂
∂¯ω
∂f
i
∂ω

∂
∂z
i
= v

∂
2
f
i
∂ω∂¯ω
+Γ
i
kj
∂f
k
∂¯ω
∂f
j
∂ω

∂
∂z
i
= 0.(4.6)
∇
∂
∂ω
Y= ∇
∂
∂ω

¯v
∂f
i
∂¯ω
∂
∂z
i

=¯v

∇
∂
∂ω
∂f
i
∂¯ω

∂
∂z
i
=¯v

∂
2
f
i
∂ω∂¯ω
+Γ
i
kj
∂f
k
∂¯ω
∂f
j
∂ω

∂
∂z
i
= 0.(4.7)
d£4.6¤!£4.7¤k
∂
∂¯ω
hX,Yi=
D
∇
∂
∂¯ω
X,Y
E
+
D
X,∇
∂
∂ω
Y
E
=0.ù¿›XhX,Yi´CP
1
X¼
ê.=hX,Yi3CP
1
þk":hX,Yi≡0.•Ò´`,(1,0).•þ|X,Yƒp,3Mþ•kk•
DOI:10.12677/pm.2023.1361771741nØêÆ
½Œ=
‡ú":.
d£4.7¤±9C©••
∂f(t)
∂t




t=0
= Y,Œ

∇
∂
∂ω
∂f
∂t





t=0
= ∇
∂
∂ω

∂f
∂t




t=0

= ∇
∂
∂ω
Y= 0.(4.8)
lŠâ1C©úª£4.5¤,
E
00
(f) = 2
Z
CP
1




∇
∂
∂ω
∂f
∂t




2
−

∂f
∂t
,R

∂
∂t
,
∂
∂¯ω

∂f
∂ω

√
−1dω∧d¯ω
= −2
Z
CP
1

R

∂f
∂
¯
t
,
∂f
∂ω

∂f
∂¯ω
,
∂f
∂
¯
t

√
−1dω∧d¯ω
= −2
Z
CP
1
R
ijkl

f
i
¯
t
f
j
¯ω
−f
i
ω
f
j
t

f
k
¯ω
f
l
¯
t
−f
k
t
f
l
ω

√
−1dω∧d¯ω
= −2
Z
CP
1
|v|
2
R
ijkl
f
i
ω
f
j
¯ω
f
k
¯ω
f
l
ω
√
−1dω∧d¯ω
= −2
Z
CP
1
|v|
−2
R(X,
¯
X,Y,
¯
Y)
√
−1dω∧d¯ω.
Ù¥|v|
−2
R(X,
¯
X,Y,
¯
Y)3v":??•0.
?d½Â4.3,
E
00
(f) = −2
Z
CP
1
|v|
−2
R(X,
¯
X,Y,
¯
Y)
√
−1dω∧d¯ω<0.
,˜•¡,duf´Uþ•zN,E
00
(f) ≥0.ù‰Ñ˜‡gñ.
Ïd?¿Uþ•zNf: (CP
1
,ω) →(M,h)7L´X½öÝX.
5P—Î,Ú£¤Ð3©z[5]A^ù‡½ny²Frankelߎ.d§¾¨7!4ޏÚ
Æ3©z[15]•|^ù‡½n?˜Úy²2ÂFrankelߎ.
Ä7‘8
‘KÜ©ÉI[g,‰ïÄ7‘8(‘8?Òµ20101A9)Ú2Üg‰Ä7‘8(‘8?Òµ
2020437)]Ï"
ë•©z
[1]oõ.õECêXN5Ÿ[D]:[a¬Æ Ø©].x²:àHŒÆ,2014.
[2]Jiang, Y.F.(2004)RealizabilityofSomeClassesofAbstractBranchDataoverRiemannSphere.
JournaloftheGraduateSchooloftheChineseAcademyofScience,42,299-304.
DOI:10.12677/pm.2023.1361771742nØêÆ
½Œ=
[3]Lyons,D.W.(2003)AnElementaryIntroductiontotheHopfFibration.MathematicsMaga-
zine,76,87-98.https://doi.org/10.1080/0025570X.2003.11953158
[4]Kobayashi,S.andOchiai,T.(1973)CharacterizationsofComplexProjectiveSpacesand
Hyperquadrics.JournalofMathematicsofKyotoUniversity,13,31-47.
https://doi.org/10.1215/kjm/1250523432
[5]Siu,Y.T.andYau,S.T.(1980)CompactK¨ahlerManifoldsofPositiveBisectionalCurvature.
InventionesMathematicae,59,189-204.https://doi.org/10.1007/BF01390043
[6]Mok,N.(1988)TheUniformizationTheoremforCompactK¨ahlerManifoldsofNonnegative
HolomorphicBisectionalCurvature.JournalofDifferentialGeometry,27,179-214.
https://doi.org/10.4310/jdg/1214441778
[7]ÖrÆ.;iù-¡gÓ[D]:[a¬Æ Ø©].f€:f€ŒÆ,2019.
[8]Guerra,L.(2022)NoteaboutHolomorphicMapsonaCompactRiemannSurface.arXiv
preprintarXiv:2201.09289
[9]4.EK˜mXN9æXN55ÚŠ©Ù[D]:[Æ¬Æ Ø©].þ°:uÀ
“‰ŒÆ,2016.
[10]r\r.iù-¡ùÂ[M].®:®ŒÆÑ‡,2013.
[11]$9.NÚNì[M].þ°:þ°‰ÆEâч,1995.
[12]Frankel,T.(1961)ManifoldswithPositiveCurvature.PacificJournalofMathematics,11,
165-174.https://doi.org/10.2140/pjm.1961.11.165
[13]£¤Ð,šn.$9.NÚNìùÂ:LecturesonHarmonicMaps[M].®:p˜Ñ‡
,2008.
[14]Moore, J.D. (2007)Second Variation ofEnergyfor MinimalSurfaces inRiemannian Manifolds.
Matem´aticaContemporanea,33,215-243.https://doi.org/10.21711/231766362007/rmc3310
[15]Feng,H.,Liu,K.andWan,X.(2017)CompactK¨ahlerManifoldswithPositiveOrthogonal
BisectionalCurvature.arXivpreprintarXiv:1710.10240
DOI:10.12677/pm.2023.1361771743nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.