设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(6),1744-1752
PublishedOnlineJune2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.136178
$‘Busemann-PettyÿݯK
ÓÔ/ª
ÁÁÁkkk
Ô;ÆŒêâÆ§B²Ô;
ÂvFϵ2023c521F¶¹^Fϵ2023c622F¶uÙFϵ2023c630F
Á‡
$‘Busemann-PettyÿݯK´•:éÙk·—ݼêBorelÿݵ9n-‘mü
‡¥%é¡àNKÚL5`§e§‚?¿n-i-‘f˜m¤§¤n-i–‘¡NÿÝ
÷vµ(K∩ξ
⊥
)≤µ(L∩ξ
⊥
)§Ù¥ξ∈G(n,i)(1≤i≤n)§@oÙn-‘àNKÚLÿݵ(K)≤
µ(L)´Ä¤áº3®k©z¥§¼†Rubin9Zhang'u$‘Busemann-Petty¯Kn-‘
NÈ/ªƒ˜—(Ø.©y²ù‡(ØÓÔ/ª§=3þã^‡e§é?¿1≤i≤n§
kµ(K)≤n
i/2
µ(L)¤á"
'…c
ÓÔ/ª§¡N§ÿݧRadonC†
AnIsomorphicVersionoftheLower
DimensionalBusemann-Petty
ProblemsforMeasures
XianyangZhu
Scho olofDateScience,TongrenUniversity,TongrenGuizhou
©ÙÚ^:Ák.$‘Busemann-PettyÿݯKÓÔ/ª[J].nØêÆ,2023,13(6):1744-1752.
DOI:10.12677/pm.2023.136178
Ák
Received:May21
st
,2023;accepted:Jun.22
nd
,2023;published:Jun.30
th
,2023
Abstract
ThelowerdimensionalBusemann-Petty(LDBP)problemforarbitrarymeasuresasks:
ForagivenBorelmeasureµwithappropriatedensityandtwoorigin-symmetricconvex
bo diesKandL,doestheassumptionthatµ(K∩ξ
⊥
)≤µ(L∩ξ
⊥
)holdsforanyξ∈
G(n,i)(1≤i<n)implythatµ(K)≤µ(L)?Itwasprovedthattheproblemhasthesame
answerasRubinandZhang’ssolutionstotheLDBPproblemforvolumes.Inthis
paperweshowanisomorphicversionofthisresult.Namely,iftheaboveconditions
hold,thenµ(K)≤n
i/2
µ(L)forany1≤i≤n.
Keywords
IsomorphicVersion,IntersectionBody,Measures,RadonTransform
Copyright
c
2023byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
3n-‘mR
n
¥,G(n,i)(1≤i<n)´i-‘Grassmann6/,L
1,loc
(R
n
)L«Û܌ȼ
ê8,µL«BorelÿÝ,ٗݼêf∈L
1,loc
(R
n
)´šKó¼ê.éz˜‡i-‘f˜mξó,ξ
⊥
Ò´ξ¥%Ö˜m,@o3ξ
⊥
þ§šKó¼êf∈L
1,loc
(R
n
)•´ÛÜŒÈ,K•3˜‡
ýéëYÿݵ,é?¿;—Borel8K⊂ξ
⊥
(½ö,K⊂R
n
),k
µ(K)=
Z
K
f(x)dx,(1)
Ù¥dxL«˜mξ
⊥
þ(n−i)-‘LebesgueÿÝ(½ö,˜mR
n
þn-‘LebesgueÿÝ).
$‘Busemann-PettyÿݯK´•:n≥2ž,KÚL´R
n
þü‡¥%é¡àN(=kš˜
SÜ;—àf8),éR
n
¥?¿n-i–‘‚5˜mξ
⊥
,b
µ(K∩ξ
⊥
)≤µ(L∩ξ
⊥
)
DOI:10.12677/pm.2023.1361781745nØêÆ
Ák
¤á§@oeª
µ(K)≤µ(L)?
´Ä¤áº
Zvavitch[1]ïÄþã¯K¥i=1œ¹,ƒASN•Œw©z[2–4],3f•˜î‚
—ݼꞧÑn≤4ž(ؤá§n≥5ž(ØØ¤á.n≥59i=n−2½n−3
ž,l©z([5]½n5.1)¥I‡é¥¡þRadonC†˜‡‡=úª?1•†nE,?ا
âÑ(J.©z[6]•Äü‡ØÓ\˜„œ¹§lÚn4.1¼þã¯K(Ø´
†Rubin9ZhangïÄ'un-‘NÈ/ª$‘Busemann-Petty¯Kƒ˜—.é?¿x∈R
n
,
Ùf(x)≡1ž,@oþã¯KÒdZhang[7](½ö[5,8–10])JÑ,¿Ñ33<n−i<nž,(ØØ
¤á,3i=n−2,n−3…n≥5ž,E,™).f(x)≡1…i=1ž,Ù¯KÒ´©z[11]¥Í¶
Busemann-Petty¯K,®²k”.‰Y,n≤4(Ø’½§n≥5(ØÄ½.)Ù)‰L§Œ
ë•©z[1,12–22],)§ˆ«í2ŒÖ©z[3,4,6–8,23–27].
lùØ©(JŒ•,$‘Busemann-PettyÿݯK3ýŒÜ©‘êe ´Ø¤á,ÏdJÑ
§ÓÔ/ªXe.
$‘Busemann-PettyÿݯKÓÔ/ª´•:µ´˜?¿ÿÝ,ٗݼêf´óšKëY
,KÚL´R
n
þü‡¥%é¡àN,e
µ(K∩ξ
⊥
)≤µ(L∩ξ
⊥
),∀ξ∈G(n,i),1≤i<n
¤á,´Ä•3˜‡Û~êL¦
µ(K)≤Lµ(L)?
¤á?
3Ø©¥·‚‰Ñ˜‡(J,†ÿݵÃ',•†¤ÀàNKÚLÃ',=†˜m‘êk'
~êL=n
i/2
.
2.~êL=n
i/2
$‘Busemann-PettyÿݯKÓÔ/ª
Ø©ò|^¥¡RadonC†Ú§ éóC†Vg9ƒ'(Ø,žë±e©z[7,8,10,13,
22,28–30].
ÎÒC(S
n−1
)L«½Â3ü ¥¡S
n−1
þ¤këY¼ê¤˜m,C
e
(S
n−1
)´
C(S
n−1
)¥¤kóëY¼ê¤f˜m,C
∞
e
(S
n−1
)K“LC
e
(S
n−1
)¥Ã¡Œ‡¼ê¤f
8,aq/,C(G(n,i))L«G(n,i)þëY¼ê˜m.f∈C(S
n−1
),g∈C(G(n,i))(1≤i≤
n−1)ž,½Âi-‘¥¡RadonC†R
i
fÚ§éóC†R
t
i
gXeµ
(R
i
f)(ξ)=
Z
S
n−1
∩ξ
f(u)dσ
i
(u);(2)
DOI:10.12677/pm.2023.1361781746nØêÆ
Ák
(R
t
i
g)(u)=
Z
ξ∈G(n,i)
g(ξ)dυ
i
(ξ),(3)
Ù¥σ
i
´S
i−1
þHaarVÇÿÝ(ùpS
i−1
Ù¢Ò´S
n−1
∩ξ),υ
i
L«à5˜m{ξ∈G(n,i):u∈
ξ}þHaarVÇÿÝ.
3R
i
fÚR
t
i
gƒm•3Xpƒ'ééó5([29–31]):
Z
G(n,i)
(R
i
f)(ξ)g(ξ)dξ=
Z
S
n−1
f(u)(R
t
i
g)(u)du.(4)
Ï•ù«éó5,µÚν©O´S
n−1
ÚG(n,i)k•BorelÿÝž,ÒŒ±rþ¡½ÂÿÐÿÝ
i-‘¥¡RadonC†R
i
µÚ§éóC†R
t
i
ν,
Z
G(n,i)
(R
i
µ)(ξ)g(ξ)dξ=
Z
S
n−1
(R
t
i
g)(u)dµ(u), g∈C(G(n,i));(5)
Z
S
n−1
(R
t
i
ν)(u)f(u)du=
Z
G(n,i)
(R
i
f)(ξ)dν(ξ),f∈C(S
n−1
).(6)
Ï~r(5)9(6){z•eª,
(R
i
µ,g)=(µ,R
t
i
g)=µ(R
t
i
g);
(R
t
i
ν,f)=(ν,R
i
f)=ν(R
i
f).
eK´R
n
¥'u:(N,=?¿˜^²L:†‚†R
n
¥;—f8K>.ƒ,
k…=kÉu:ü‡:,K½ÂK»•¼êρ
K
=ρ(K,·)•
ρ
K
(x)=max{λ>0:λx∈K},x∈R
n
\{0}.
Ún2.1bÿݵ—ݼêf ∈L
1,loc
(ξ
⊥
),ξ
⊥
´ξ∈G(n,i)Ö,@oé?¿à
NL⊂R
n
k,
µ(L∩ξ
⊥
)=(n−i)ω
n−i
R
n−i

Z
ρ
L
0
f(r·)r
n−i−1
dr

(ξ
⊥
),(7)
Ù¥ω
j
L«R
j
¥j-ü ¥NÈ.
y²Šâ4‹IúªÚ½Â(2),k
µ(L∩ξ
⊥
)=
Z
L∩ξ
⊥
f(x)dx
=
Z
S
n−1
∩ξ
⊥
Z
ρ
L
(u)
0
f(ru)r
n−i−1
drdu
=(n−i)ω
n−i
Z
S
n−1
∩ξ
⊥
Z
ρ
L
(u)
0
f(ru)r
n−i−1
drdσ
i
(u)
=(n−i)ω
n−i
R
n−i

Z
ρ
L
0
f(r·)r
n−i−1
dr

(ξ
⊥
),
DOI:10.12677/pm.2023.1361781747nØêÆ
Ák
3(7)¥,f=1,Kk
vol
n−i
(L∩ξ
⊥
)=ω
n−i
(R
n−i
ρ
n−i
L
)(ξ
⊥
).(8)
R
n
¥˜‡:é¡(NK¡•´(n−i)-¡N([7,28]),XJ3G(n,n−i)þ•3šK
Borelÿݵ,kXeª¤á,
Z
S
n−1
ρ
i
K
(u)f(u)du=(R
n−i
f,µ)=µ(R
n−i
f),∀f∈C(S
n−1
).(9)
þª•du
ρ
i
K
=R
t
n−i
µ.
^ ÎÒI
n
n−i
L«¤k(n−i)-¡N¤8Üa,3i=1ž,I
n
n−1
Ò´Lutwak[19]½Â¡N
Vg,˜„^ÎÒI
n
L«.
ة̇(Øy²I‡Milman[10]ïá'uþãVg˜‡S“5Ÿ.
Ún2.2eK
1
∈I
n
n−i
1
,K
2
∈I
n
n−i
2
(i
1
,i
2
<n),…÷vi
3
=i
1
+i
2
<n,@o•âªρ
i
3
K
3
=
ρ
i
1
K
1
ρ
i
2
K
2
(½:é¡(NK
3
˜½´˜‡(n−i
3
)-¡N,=K
3
∈I
n
n−i
3
.
·‚„I‡e¡ÄØª,i=1œ¹3Ø©[1,3]¥®²y².
Ún2.3êi÷v1≤i≤n−1,ω,a,b∈(0,∞)´?¿¢ê,9α:R
+
→R
+
´Œÿ¼ê,
@ok(Ø
ω
a
i
Z
a
0
t
n−1
α(t)dt−ω
Z
a
0
t
n−i−1
α(t)dt≤
ω
a
i
Z
b
0
t
n−1
α(t)dt−ω
Z
b
0
t
n−i−1
α(t)dt,(10)
bþª9ȩѕ3.XJ,šK¼êα(t)ØR
+
¥,‡Œê:8,α(t)>0¤á,@
o…=a=bž(10)ª´˜‡ðª.
y²a6=bž,‡y²Øª(10)du
a
i
Z
b
0
t
n−i−1
α(t)dt−a
i
Z
a
0
t
n−i−1
α(t)dt≤
Z
a
0
t
n−1
α(t)dt−
Z
b
0
t
n−1
α(t)dt.
•Ò´
Z
b
a

a
t

i
t
n−1
α(t)dt≤
Z
b
a
t
n−1
α(t)dt.(11)
Ï•α≥0,…3(11)¥N´e0<a<bKka/t≤1,ea>b>0Kka/t≥1,¤±ÃØa<b„
´a>b,Øª(11)w,¤á.
a=bž,(10)ªá=C¤˜‡ðª.‡ƒ,b
Z
a
0
t
n−1
α(t)dt−a
i
Z
a
0
t
n−i−1
α(t)dt=
Z
b
0
t
n−1
α(t)dt−a
i
Z
b
0
t
n−i−1
α(t)dt.
DOI:10.12677/pm.2023.1361781748nØêÆ
Ák
=´
Z
a
0
t
n−1
α(t)dt+a
i
Z
b
0
t
n−i−1
α(t)dt=
Z
b
0
t
n−1
α(t)dt+a
i
Z
a
0
t
n−i−1
α(t)dt,
du¼ê
R
s
0
t
n−1
α(t)dtÚa
i
R
s
0
t
n−i−1
α(t)dt3s>0žüN5(Ï•šK¼êα(t)Øt∈R
+
¥,
‡Œê:8,kα(t)6=0),¤±a=b.
eKÚL´R
n
¥ü‡:é¡àN,K½Â§‚ƒmBanach-Mazurål•
d
BM
(K,L)=inf{d>0:∃T∈GL(n):K⊂TL⊂dK},
…P
d
I
K=min{d
BM
(K,L):L•¡N}.
½n2.4f∈L
1,loc
(R
n
)´˜‡óšKëY¼ê,µ´—ݼê•fk•BorelÿÝ,
…K,L⊂R
n
´ü‡:é¡àN,÷v^‡
µ(K∩ξ
⊥
)≤µ(L∩ξ
⊥
),ξ∈G(n,i),1≤i≤n−1,(12)
@ok
µ(K)≤d
i
I
(K)µ(L).
y²Šâ(7)ª-(12)•
R
n−i

Z
ρ
K
(·)
0
f(t·)t
n−i−1
dt

(ξ
⊥
)≤R
n−i

Z
ρ
L
(·)
0
f(t·)t
n−i−1
dt

(ξ
⊥
).(13)
ÏL*,˜•¡,é÷vQ⊂K⊂d
I
(K)Q(du ¡N‚5C†”E,´˜‡¡N)
¡NQ∈I
n
,ëY/|^Ún2.2,KQ∈I
n
n−i
.23G(n,n−i)þ'uÿݵé(13)ªÈ©(éA
u(n−i)-¡NQ),|^(6),(9),
Z
S
n−1
ρ
i
Q
(u)
Z
ρ
K
(u)
0
f(tu)t
n−i−1
dtdu≤
Z
S
n−1
ρ
i
Q
(u)
Z
ρ
L
(u)
0
f(tu)t
n−i−1
dtdu;(14)
,˜•¡,3Ún2.3¥,ω=ρ
i
Q
(u),a=ρ
K
(u),b=ρ
L
(u)Úα(t)=f(tu),Ñeª
ρ
i
Q
(u)
ρ
i
K
(u)
Z
ρ
K
(u)
0
t
n−1
f(tu)dt−ρ
i
Q
(u)
Z
ρ
K
(u)
0
t
n−i−1
f(tu)dt
≤
ρ
i
Q
(u)
ρ
i
K
(u)
Z
ρ
L
(u)
0
t
n−1
f(tu)dt−ρ
i
Q
(u)
Z
ρ
L
(u)
0
t
n−i−1
f(tu)dt(15)
é(15)3S
n−1
þÈ©,•â(14)ÚQ⊂K⊂d
I
(K)Q,·‚¼
Z
S
n−1
ρ
i
Q
(u)
ρ
i
K
(u)
Z
ρ
K
(u)
0
t
n−1
f(tu)dtdu≤
Z
S
n−1
ρ
i
Q
(u)
ρ
i
K
(u)
Z
ρ
L
(u)
0
t
n−1
f(tu)dtdu,
DOI:10.12677/pm.2023.1361781749nØêÆ
Ák
=
1
d
i
I
(K)
Z
S
n−1
Z
ρ
K
(u)
0
t
n−1
f(tu)dtdu≤
Z
S
n−1
Z
ρ
L
(u)
0
t
n−1
f(tu)dtdu.(16)
ù‡ØªÙ¢Ò´eª4‹I/ª
µ(K)≤d
i
I
(K)µ(L).
w,/,î¼ü ¥B
n
2
´‡¡N,•âJohn½n,9é?¿:é¡àNK⊂R
n
kd
BM
(K,B
n
2
)≤
√
n¤á¯¢,†½n2.4˜Œ±ïXeíØ.
íØ2.5f∈L
1,loc
(R
n
)´˜óšKëY¼ê,µ´k—ݼê•fk•BorelÿÝ,
KÚL´R
n
¥ü‡:é¡àN§XJ÷veª
µ(K∩ξ
⊥
)≤µ(L∩ξ
⊥
),ξ∈G(n,i),1≤i≤n−1,
@ok
µ(K)≤n
i/2
µ(L).
5µ½n2.4ÚíØ2.5¥i=1œ/3©z[3]¥®²y².
Ä7‘8
I[g,‰ÆÄ7]Ï‘8(10801140)¶Ô;ÆƬ‰ïéÄÄ7‘8(trxyDH2220)"
ë•©z
[1]Zvavitch,A.(2005)TheBusemann-PettyProblemforArbitraryMeasures.Mathematische
Annalen,331,867-887.https://doi.org/10.1007/s00208-004-0611-5
[2]Koldobsky,A.(2000)AFunctionalAnalyticApproachtoIntersectionBodies.Geometricand
FunctionalAnalysis,10,1507-1526.https://doi.org/10.1007/PL00001659
[3]Koldobsky,A.andZvavitch,A.(2015)AnIsomorphicVersionoftheBusemann-PettyProblem
forArbitraryMeasures.GeometriaeDedicata,174,261-277.
https://doi.org/10.1007/s10711-014-0016-x
[4]Zymonopoulou,M.(2008)TheComplexBusemann-PettyProblemforArbitraryMeasures.
ArchivderMathematik,91,436-449.https://doi.org/10.1007/s00013-008-2863-x
[5]Rubin,B.andZhang,G.(2004)GeneralizationsoftheBusemann-PettyProblemforSections
ofConvexBodies.JournalofFunctionalAnalysis,213,473-501.
https://doi.org/10.1016/j.jfa.2003.10.008
DOI:10.12677/pm.2023.1361781750nØêÆ
Ák
[6]Rubin,B.(2006)TheLowerDimensionalBusemann-PettyProblemwithWeights.Mathemati-
ka,53,235-245.https://doi.org/10.1112/S0025579300000115
[7]Zhang,G.(1996)SectionsofConvexBodies.AmericanJournalofMathematics,118,319-340.
https://doi.org/10.1353/ajm.1996.0021
[8]Bourgain,J.andZhang,G.(1998)OnaGeneralizationoftheBusemann-PettyProblem.
In:Ball,K.andMilman,V.,Eds.,ConvexGeometricAnalysis,MSRIPublications,Vol.34,
CambridgeUniversityPress,NewYork,65-76.
[9]Koldobsky,A.(2000)AFunctionalAnalyticApproachtoIntersectionBodies.Geometricand
FunctionalAnalysis,10,1507-1526.https://doi.org/10.1007/PL00001659
[10]Milman,E.(2005)GeneralizedIntersectionBodies.JournalofFunctionalAnalysis,240,530-
567.https://doi.org/10.1016/j.jfa.2006.04.004
[11]Busemann,H.andPetty,C.H.(1956)ProblemsonConvexBodies.MathematicaScandinavica,
4,88-94.https://doi.org/10.7146/math.scand.a-10457
[12]Ball,K.(1988)SomeRemarksontheGeometryofConvexSets.In:Lindenstrauss,J.and
Milman,V.,Eds.,GeometricAspectsofFunctionalAnalysis1986-1987,LectureNotesin
Mathematics,Vol.1317,Springer,Berlin,224-231.https://doi.org/10.1007/BFb0081743
[13]Barthe,F.,Fradelizi,M.andMaurey,B.(1999)AShortSolutiontotheBusemann-Petty
Problem.Positivity,3,95-100.https://doi.org/10.1023/A:1009777119957
[14]Bourgain,J.(1991)OntheBusemann-PettyProblemforPerturbationsoftheBall.Geometric
andFunctionalAnalysis,1,1-13.https://doi.org/10.1007/BF01895416
[15]Gardner,R.J.(1994)APositiveAnswertotheBusemann-PettyProbleminThreeDimensions.
AnnalsofMathematics,140,435-447.https://doi.org/10.2307/2118606
[16]Gardner,R.J.,Koldobsky,A.andSchlumprecht,T.(1999)AnAnalyticSolutiontothe
Busemann-PettyProblemonSectionsofConvexBodies.AnnalsofMathematics,149,691-703.
https://doi.org/10.2307/120978
[17]Giannopoulos,A.(1990)ANoteonaProblemofH.BusemannandC.M.PettyConcerning
SectionsofSymmetricConvexBodies.Mathematika,37,239-244.
https://doi.org/10.1112/S002557930001295X
[18]Larman,D.G.andRogers,C.A.(1975)TheExistenceofaCentrallySymmetricConvexBody
withCentralCross-SectionsThatAreUnexpectedlySmall.Mathematika,22,164-175.
https://doi.org/10.1112/S0025579300006033
[19]Lutwak,E.(1988)IntersectionBodiesandDualMixedVolumes.AdvancesinMathematics,
71,232-261.https://doi.org/10.1016/0001-8708(88)90077-1
[20]Papadimitrakis,M.(1992)OntheBusemann-PettyProblemaboutConvex,CentrallySym-
metricBodiesinR
n
.Mathematika,39,258-266.https://doi.org/10.1112/S0025579300014996
DOI:10.12677/pm.2023.1361781751nØêÆ
Ák
[21]Zhang,G.(1994)CenteredBodiesandDualMixedVolumes.TransactionsoftheAMS,345,
777-801.https://doi.org/10.1090/S0002-9947-1994-1254193-9
[22]Zhang,G.(1999)APositiveAnswertotheBusemann-PettyProbleminR
4
.AnnalsofMath-
ematics,149,535-543.https://doi.org/10.2307/120974
[23]Giannopoulos,A.andKoldobsky,A.(2016)VariantsoftheBusemann-PettyProblemandof
theShephardProblem.arXiv:1601.02231
[24]Koldobsky,A.andYaskin,V.(2008)TheInterfacebetweenConvexGeometryandHarmonic
Analysis.In:CBMSRegionalConferenceSeriesinMathematics,Vol.108,AmericanMathe-
maticalSociety,Providence,RI.https://doi.org/10.1090/cbms/108
[25]Rubin,B.(2008)IntersectionBodiesandGeneralizedCosineTransforms.AdvancesinMath-
ematics,218,696-727.https://doi.org/10.1016/j.aim.2008.01.011
[26]Yaskin,V.(2006)ASolutiontotheLowerDimensionalBusemann-PettyProblemintheHyper-
bolicSpace.JournalofGeometricAnalysis,16,735-745.https://doi.org/10.1007/BF02922139
[27]Zymonopoulou,M.(2008)TheComplexBusemann-PettyProblemforArbitraryMeasures.
ArchivderMathematik,91,436-449.https://doi.org/10.1007/s00013-008-2863-x
[28]Grinberg,E.andZhang,G.(1999)Convolutions,TransformsandConvexBodies.Proceedings
oftheLondonMathematicalSociety,78,77-115.https://doi.org/10.1112/S0024611599001653
[29]Helgason,S.(1984)GroupsandGeometricAnalysis.AcademicPress,CambridgeMA.
[30]Helgason,S.(1999)TheRadonTransform.2ndEdition,Birkh¨auser,Boston.
https://doi.org/10.1007/978-1-4757-1463-0
[31]Rubin,B.(2002)InversionFormulasfortheSphericalRadonTransformandtheGeneralized
CosineTransform.AdvancesinAppliedMathematics,29,471-497.
https://doi.org/10.1016/S0196-8858(02)00028-3
DOI:10.12677/pm.2023.1361781752nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.