设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(6),1758-1768
PublishedOnlineJune2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.136180
+GorensteinÓN‘ê
ÛÛÛŒŒŒŒŒŒ
-Ÿ“‰ŒÆ§êÆ‰ÆÆ§-Ÿ
ÂvFϵ2023c521F¶¹^Fϵ2023c622F¶uÙFϵ2023c630F
Á‡
G´+§R´†‚"½Â+G3Xê‚RþGorensteinÓN‘êGhd
R
G•²…RG-R
Gorenstein²"‘ê"y²é†‚Frobenius*ÜR→S§kGhd
S
G=Ghd
R
G"d§
„ïÄ+GorensteinÓN‘ê†Ùf+GorensteinÓN‘êƒm'X"y²é+G
˜‡,SLÈ(G
λ
)
λ<µ
§kGhd
R
G≤sup
λ<µ
Ghd
R
G
λ
"?§XJ[G:G
λ
]
λ<µ
´k•§@
oGhd
R
G= sup
λ<µ
Ghd
R
G
λ
"
'…c
GorensteinÓN‘ê§+‚§Gorenstein²"§Frobenius*Ü
OnGorensteinHomologicalDimensionof
Groups
YuxiangLuo
SchoolofMathematicalSciences,ChongqingNormalUniversity,Chongqing
Received:May21
st
,2023;accepted:Jun.22
nd
,2023;published:Jun.30
th
,2023
Abstract
LetGbegroupandRcommutativering.TheGorensteinhomologicaldimension
Ghd
R
GofthegroupGoverthecoefficientringRisdefinedastheGorensteinflat
©ÙÚ^:ÛŒŒ.+GorensteinÓN‘ê[J].nØêÆ,2023,13(6):1758-1768.
DOI:10.12677/pm.2023.136180
ÛŒŒ
dimensionoftrivialRG-moduleR.ItisprovedthatGhd
S
G=Ghd
R
GforanyFrobe-
niusextensionofcommutativeringsR→S.Inaddition,therelationshipbetween
theGorensteinhomologicaldimensionofagroupandtheGorensteinhomologicaldi-
mensionofitssubgroupsisstudied.ItisprovedthatGhd
R
G≤sup
λ<µ
Ghd
R
G
λ
for
anascendingfilltering(G
λ
)
λ<µ
ofgroupG;furthermore,if[G:G
λ
]
λ<µ
isfinite,then
Ghd
R
G= sup
λ<µ
Ghd
R
G
λ
.
Keywords
GorensteinHomologicalDimension,GroupRing,GorensteinFlat,
FrobeniusExtension
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense (CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
1969c,AuslanderÚBridger3†ìA‚þk•)¤‰Æ¥,Ú\˜‡-‡ØCþ,
¡•G-‘ê[1].3›-VÊ›c“,Enochs,Jenda,Torrecillas3?¿‚þÚ\GorensteinS
,GorensteinÝÚGorenstein²"Vg,§‚©Oí2S,ÝÚ²"[2,3].
3+Ø¥,ÏL+(þ)ÓN5Ÿ5ïÄ+´˜‡{¤aÈ¯K,+(þ)ÓN5Ÿ5u
“êÚÿÀ.é?¿+G,ÙþÓN‘ê½Â•²…ZG-ZÝ‘ê,ÓN‘ê½Â•²
…ZG-Z²"‘ê[4].l©z[5]Ú[6]¥Œ±wÑùØCþ-‡5:š²…+´gd+…
=ÙþÓN‘êu1.‘,+Gorenstein(þ)ÓN‘ꊕ+(þ)ÓN‘êí2Ú\.
©z[4,6–11]¥3Xê‚´ê‚Z½k•(f)N‘ê†‚œ¹e,é+GorensteinþÓ
N‘ê?12•ïÄ.AO/,3©[10]¥Š öuy+GorensteinþÓN‘ê•6uXê‚,y
²é?¿†‚k,kGcd
k
G≤Gcd
Z
G.2011cAsadollahi<3©z[12]¥ò+ÓN‘êí
2+GorensteinÓN‘ê,Ú\Xê‚•ê‚Zþ+GorensteinÓN‘ê,½Â•
²…ZG-ZGorenstein²"‘ê;PŠGhd
Z
G.¦‚y²+G´k•+…=Ghd
Z
G=0;
3H´G˜‡•êk•f+…sfli(ZG)k•^‡ey²Ghd
Z
G=Ghd
Z
H.3©z[13]¥Û
ŒŒÚ?•½Â+G3Xê‚RþGorensteinÓN‘êGhd
R
G,¿y²é†‚²"*
ÜR→S,kØªGhd
S
G≤Ghd
R
G.
k•++‚*Ü,†“êþAzumaya“ê,Markov*ÜÑ´Frobenius*Ü(~2.6).
‚Frobenius*ÜVg´Frobenius“êg,í2[14],32-‘ÿÀþf|Ø,Cherednik“ê
Calabi-Yau5Ÿ,²"››‘êÃõïÄ+•å-‡Š^[15–17].GorensteinÓN5
Ÿ3Frobenius*ÜeØC5•3CÏÉ2•'5,X±Úë“W3©z[18]¥y²
DOI:10.12677/pm.2023.1361801759nØêÆ
ÛŒŒ
ÃL5Úg‡53Frobenius*Üe´±;ô‘,o••Ú?•3©z[19,20]¥y²
GorensteinÝÚGorenstein²"3Frobenius*Üe´±.Ïd˜‡g,¯K´+
GorensteinÓN‘ê3‚Frobenius*Üe´Ä±,ù•´©ïÄSNƒ˜.
ÄuAsadollahi<3©z[12]¥Ú\Xê‚•ê‚Zþ+GorensteinÓN‘êGhd
Z
G.
aq/,3©z[13]¥½Â+G3Xê‚RþGorensteinÓN‘êVg.©Ì‡ïÄ+
GorensteinÓN‘êéXê‚•65,9 Ù†f+GorensteinÓN‘êéX.©(S
ü̇©•Úó!ý•£!̇(J±9(؆Ð"o‡Ü©.31˜Ü©Úó¥,·‚̇0
+GorensteinÓNnØïÄµ9yG¶1Ü©´ý•£,·‚{ü0‚*Ü,
+‚þ9Gorenstein²"Ä•£¶1nÜ©·‚‰ Ñ¿y²·‚̇(J,ÄkïÄ
+GorensteinÓN‘êéXê‚•65.y²XJR→S´†‚Frobenius*Ü,@o
kGhd
S
G=Ghd
R
G.ÙgïÄ+GorensteinÓN‘ê†Ùf+GorensteinÓN‘êƒm
'X.y²é+G˜‡,SLÈ(G
λ
)
λ<µ
,kGhd
R
G≤sup
λ<µ
Ghd
R
G
λ
.?,XJ[G: G
λ
]
λ<µ
´k•,@oGhd
R
G= sup
λ<µ
Ghd
R
G
λ
;1oÜ©´·‚(؆Ð".
2.ý•£
Gorenstein²"9‘ê
©¥, ‚•kü (Ü‚. A´˜‡‚.^A
op
L«‚A‡‚, ^Mod(A) L«(†)A-
‰Æ.
½Â2.1.[21]¡(†)A-M´Gorenstein²",XJ•3²"(†)A-ÜE/
···−→F
−2
−→F
−1
−→F
0
−→F
1
−→F
2
−→···
¦é?¿S(m)A-I,^¼fI⊗
A
−Š^TE/EÜE/,…M
∼
=
Im(F
0
→F
1
).
PGF(A)•¤kGorenstein²"(†)A-¤a.
½Â2.2.[21]M´˜‡(†)A-,MGorenstein²"‘ê,P•Gfd
A
M,½Â•
Gfd
A
M= inf{n|∃0 →Q
n
→···→Q
1
→Q
0
→M→0;Q
i
∈GF(A),i= 0,1,···,n.}
XJMvkk••ÝGorenstein²"©),KGfd
A
M= ∞.
3©[21]¥b‚´và,±yGorenstein²"aGF(A)'u*ܵ4ù˜Ä5Ÿ´¤
á.T5ŸéGorenstein²"ïÄ–'-‡,Ø´y².d©([22]íØ3.12)·‚y3Œ•
T5Ÿé?¿‚Ñ´¤á,©[21,23,24](Ø¥và‚ÚGF-4‚^‡ÑŒ±K.ddŒ
•eã(Ø.
Ún2.3.[24]A´?¿‚.Gorenstein²"(†)A-aGF(A)k±e(Ø:
(1)GF(A)'u*ܵ4.=é?¿(†)A-áÜS0→M
00
→M
0
→M→0,X
JM
00
,M∈GF(A),@oM
0
∈GF(A).
(2)GF(A)'u†Ú‘µ4.=é?¿(†)A-M†Ú‘N,XJM´Gorenstein²",@
oN•´Gorenstein²".
(3)GF(A)'u•4•µ4.=é?¿Gorenstein²"(†)A-SM
0
→M
1
→M
2
→
···,klim
−→
M
n
∈GF(A).
DOI:10.12677/pm.2023.1361801760nØêÆ
ÛŒŒ
Ún2.4.[23]A´?¿‚,M•Gorenstein²"‘êk•(†)A-,n≥0´˜‡ê.e
^‡d:
(1)Gfd
A
M≤n.
(2)é¤kS‘êk•(m)A-LÚ¤ki>n,kTor
A
i
(L,M) = 0.
(3)é¤kS(m)A-IÚ¤ki>n,kTor
A
i
(I,M) = 0.
(4)é?¿ÜS
0 →K
n
→Q
n−1
→···→Q
0
→M→0,
XJQ
0
,···,Q
n−1
´Gorenstein²",@oK
n
•´Gorenstein²".
‚*Ü
XJR´‚Sf‚,@o¡R→S´˜‡‚*Ü;XJSŠ•R-´²",@o¡‚*
ÜR→S´²"*Ü.3‚*ÜnØ¥,˜‡š~-‡‚*Ü¡•‚Frobenius*Ü,§
´Frobenius“êg,í2.y®2•A^uNõ+•,'X2-‘ÿÀþf|Ø,Cherednik“ê
Calabi-Yau5Ÿ,²"››‘ê.e¡£Œ©Frobenius*ÜVg[25];•Œ„([20]½Â2.8).
½Â2.5.[25]¡‚*ÜR→S´Frobenius*Ü,XJSŠ•mR-´k•)¤Ý¿
…
R
S
S
∼
=
(
S
S
R
)
∗
= Hom
R
op
(
S
S
R
,R).T^‡•duS⊗
R
−ÚHom
R
(S,−)´g,d¼f.
~2.6.(1)é?¿k•+G,+‚*ÜZ→ZG´Frobenius*Ü;„([20]~2.10(1)).
(2)R´˜‡†“ê,S´RþAzumaya“ê.KR→S´Frobenius*Ü;„([26]~2.4
(3)).
(3)R´˜‡‚,n>0.^M
n
(R)ÚS
n
(R)©OL«n-Ý‚Ú¥%é¡Ý‚.
KS
n
(R) →M
n
(R)´Frobenius*Ü.„([27]½n3.1).
+‚þ
R´˜‡†‚ÚG´˜‡+.RG´Gƒ)¤gdR-,ÏdRGƒŒ±•˜/
L«•
P
g∈G
r(g)g,Ù¥r(g)∈R,…éA¤kgkr(g)= 0.ù¦RG¤˜‡‚,¡•G+
‚.
+‚RGþ˜‡M´˜‡R-M\þ+GéMŠ^.é?¿RG-M,G²…Š^3Mþ
•Œf•
M
G
:= {m∈M|gm= m,∀g∈G}.
a q/,G²…Š^3Mþ•ŒûdM†/X{gm−m|∀g∈G,m∈M}ƒ)¤f
û,=
M
G
:= M/hgm−mi.
duR´†‚,+Gkg‡Óg→g
−1
,Œò?Û†RG-MÀ•mRG-,Ù¥é?
¿g∈GÚm∈Mkmg= g
−1
m.ù,éu?¿ü‡†RG-MÚN,ÜþÈM⊗
RG
NÏL'X
g
−1
m⊗n= mg⊗n= m⊗gn
DOI:10.12677/pm.2023.1361801761nØêÆ
ÛŒŒ
Ú\Ck¿Â.^gmO†m,lk
m⊗n= g
−1
(gm)⊗n= (gm)g⊗n= gm⊗gn
Ïd
M⊗
RG
N= (M⊗
R
N)
G
,
Ù¥G“é”Š^3M⊗
R
Nþ,=g(m⊗n)=gm⊗gn,Ù¥m∈M,n∈N,g∈G.d,G
éHom
R
(M,N)+Š^,d“é”Š^
(gu)(m) = g·u(g
−1
m)
‰Ñ,Ù¥g∈G,u∈Hom
R
(M,N),m∈M.ddŒ
Hom
RG
(M,N) = Hom
R
(M,N)
G
.
•õ[!ë•©z[4].
Ún2.7.R,S´†‚,G´+.XJR→S´‚*Ü,@ok¼fg,d:
(1)S⊗
R
−'SG⊗
RG
−.
(2)Hom
R
(S,−) 'Hom
RG
(SG,−).
y²(1)¼fS:= S⊗
R
−, ¼fT:= SG⊗
RG
−.KS,T´lRG-‰ÆMod(RG)SG-
‰ÆMod(SG)C¼f.-τ:S→T•˜‡C†,τ=(τ
M
:SM→TM)
M∈Mod(RG)
.é?¿
f: M→M
0
,Ù¥M,M
0
∈Mod(RG).ke†ã:
SM
τ
M
//
Sf

TM
Tf

SM
0
τ
M
0
//
TM
0
Ïdτ´˜‡g,C†.dé?¿M∈Mod(RG),k
S⊗
R
M
∼
=
SG⊗
SG
(S⊗
R
M) = (SG⊗
S
S⊗
R
M)
G
∼
=
(SG⊗
R
M)
G
= SG⊗
RG
M,
ùÒ¿›Xτ´˜‡g,Ó.ÏdS⊗
R
−'SG⊗
RG
−.
(2)¼fS
0
:= Hom
R
(S,−),¼fT
0
:= Hom
RG
(SG,−).KS
0
,T
0
´lRG-‰ÆMod(RG)SG-
‰ÆMod(SG)C¼f.-η: S
0
→T
0
•˜‡C†,η= (η
N
: S
0
N→T
0
N)
N∈Mod(RG)
.é?¿
f: N→N
0
,Ù¥N,N
0
∈Mod(RG).ke†ã:
S
0
N
η
N
//
S
0
f

T
0
N
T
0
f

S
0
N
0
η
N
0
//
T
0
N
0
DOI:10.12677/pm.2023.1361801762nØêÆ
ÛŒŒ
Ïdη´˜‡g,C†.dé?¿N∈Mod(RG),k
Hom
RG
(SG,N)
∼
=
Hom
RG
(RG⊗
RG
SG,N)
∼
=
Hom
RG
(RG⊗
R
S,N)
∼
=
(Hom
R
(RG⊗
R
S,N))
G
∼
=
(Hom
R
(RG,Hom
R
(S,N)))
G
∼
=
Hom
RG
(RG,Hom
R
(S,N))
∼
=
Hom
R
(S,N),
ùÒ¿›Xη´˜‡g,Ó.ÏdHom
R
(S,−) 'Hom
RG
(SG,−).y..
3.+GorensteinÓN‘êéXê‚•65
!k‰Ñ+G3Xê‚RþGorensteinÓN‘ê½Â,,?ØÙ3Frobenius*Üe
5Ÿ.
é?¿+G,+GorensteinÓN‘ê½Â•²…ZGZGorenstein²"‘ê([12]½Â4.5).
aq/,3©z[13]¥ke½Â
½Â3.1.[13]R´†‚ÚG´?¿+.+G3Xê‚RþGorensteinÓN‘ê½Â•²
…RG-RGorenstein²"‘ê,PŠGhd
R
G.
53.2.du?¿²"´Gorenstein²",é?¿†‚RÚ+GkGhd
R
G≤hd
R
G,Ù
¥hd
R
GL«+G3Xê‚RþÓN‘ê,=²…RG-R²"‘ê.AO/,hd
R
Gk•ž,
Ghd
R
G= hd
R
G.
Ún3.3.[13]R→S´†‚²"*Ü.é?¿+G,k
Ghd
S
G≤Ghd
R
G.
Ún3.4.R,S´†‚, G´+.XJR→S´Frobenius*Ü, @oRG→SG•´Frobenius*
Ü.
y²duR→S´†‚Frobenius*Ü, ÏL½Â2.5Œ•, •3¼fg,dS⊗
R
−'
Hom
R
(S,−).qdÚn2.7Œ•S⊗
R
−'SG⊗
RG
−ÚHom
R
(S,−) 'Hom
RG
(SG,−).Ïdk¼f
g,dSG⊗
RG
−'Hom
RG
(SG,−),=RG→SG´˜‡Frobenius*Ü.y..
e¡½nL²+GorensteinÓN‘êGhd
R
G÷X‚Frobenius*ÜäkØC5.
½n3.5.R→S´†‚Frobenius*Ü.é?¿+G,k
Ghd
S
G= Ghd
R
G.
y²duR→S´†‚Frobenius*Ü,g,•´‚²"*Ü,ÏdŠâ½n3.3á=
kGhd
S
G≤Ghd
R
G.
eyGhd
R
G≤Ghd
S
G.•ÄRÚSŠ•RG-,Ù¥G²…Š^3RÚSþ,@oR´S†Ú
‘.lŠâÚn2.3Œ•Ghd
R
G= Gfd
RG
R≤Gfd
RG
S.Ïd•Iy²ØªGfd
RG
S≤Ghd
S
G=
Gfd
SG
S¤á=Œ.
XJGhd
S
G= ∞,@oGfd
RG
S≤Ghd
S
G´w,.ybGhd
S
G= n´k•.Šâ½Â•
DOI:10.12677/pm.2023.1361801763nØêÆ
ÛŒŒ
3SG-ÜS
Q= 0 →Q
n
→Q
n−1
→···→Q
1
→Q
0
→S→0
Ù¥Q
i
∈GF(SG)(0≤i≤n).M´?¿Gorenstein²"SG-.@oŠâ½Â,•3SG-
²"©)
F= ···→F
−1
→F
0
→F
1
→···
¦M
∼
=
Im(F
0
→F
1
).duR→S´†‚Frobenius*Ü,ŠâÚn3.4Œ•RG→SG•
´Frobenius*Ü.Ïdé?¿SmRG-I,kÓI⊗
RG
SG
∼
=
Hom
RG
(SG,I)ÚI⊗
RG
F
∼
=
(I⊗
RG
SG)⊗
SG
F.5¿pI⊗
RG
SG´SSG-…E/I⊗
RG
F´Ü.ÏdSG-
²"©)F•›•RG-SE•²"©),lM•›•Gorenstein²"RG-.ÏdQ•
›•RG-SE•Ü…z‡Q
i
´Gorenstein²"RG-,=Gfd
RG
S≤n.y..
4.+Cze+GorensteinÓN‘ê
!òïÄ+GorensteinÓN‘ê†Ùf+GorensteinÓN‘êƒméX.
R´†‚,H´+Gf+.w,RGŠ•RH-´gd.ÏdRH→RGg,/¤˜‡
²"*Ü,?lRG-RH-•›¼fRes
G
H
´Ü…±SÚ²".PlRH-‰
ÆMod(RH)RG-‰ÆMod(RG)p¼f•
Ind
G
H
−= RG⊗
RH
−
Ú{p¼f•
Coind
G
H
−= Hom
RH
(RG,−).
¡+G˜‡f+S(G
λ
)
λ<µ
•,SLÈ,XJ•3˜‡4••IµÚS
{1}= G
0
⊆G
1
⊆···⊆G
λ
⊆···⊆G,
¦G= G
µ
= lim
−→
λ<µ
G
λ
.
Ún4.1.R´†‚, H´+G•êk•f+.é?¿RH-M,pInd
G
H
M´Gorenstein²
"RG-.
y²duM´Gorenstein²"RH-,Ïd•3˜‡RH-²"©)
F= ···→F
−1
→F
0
→F
1
→···
5¿RGŠ•RH-´²",Ïdk²"RG-ÜE/
Ind
G
H
F= ···→Ind
G
H
F
−1
→Ind
G
H
F
0
→Ind
G
H
F
1
→···.
é?¿SmRG-E, E´SRH-…kÓE⊗
RG
Ind
G
H
F
∼
=
E⊗
RH
F.ÏdInd
G
H
M´Gorenstein
²"RG-.
DOI:10.12677/pm.2023.1361801764nØêÆ
ÛŒŒ
·K4.2.R´†‚,G´+.•Ä+G˜‡,SLÈ(G
λ
)
λ<µ
.é?¿RG-MÚλ<µ,
XJMЕRG
λ
-´Gorenstein²",@oM´Gorenstein²"RG-.
y²é?¿λ<µ,ŒÀM•˜‡RG
λ
-.y•Äp
M
λ
= Ind
G
G
λ
M= RG⊗
RG
λ
M.
duG
µ
=G,ÏdM
µ
=RG⊗
RG
µ
M=M.qdÚn4.1Œ•pM
λ
•´Gorenstein²"RG-
.é?¿k≤λ<µ,d i\G
k
→G
λ
pRG-÷ÓM
k
→M
λ
.l,·‚kRG-S

M
0
→M
1
→···→M
λ
→···→M
µ
= M
5¿Šâ([21]½n3.7)Ú([28]·K2.3)Œ•GF(RG)é?¿•4•µ4.ÏdM= M
µ
= lim
−→
λ<µ
M
λ
´Gorenstein²"RG-.y..
·K4.3.R´†‚,G´+.•Ä+G˜‡,SLÈ(G
λ
)
λ<µ
.é?¿RG-M,k
Gfd
RG
M≤sup
λ<µ
Gfd
RG
λ
M.
y²XJsup
λ<µ
Gfd
RG
λ
M=∞,@o(Øw,¤á.ybsup
λ<µ
Gfd
RG
λ
M=n<∞.•
ÄM˜‡RG-²"©)
···→F
n
→F
n−1
→···→F
0
→M→0
ÚÜÀN= Im(F
n
→F
n−1
).du?¿²"RG-À•RG
λ
-E´²",dsup
λ<µ
Gfd
RG
λ
M≤
nŒ•N´Gorenstein²"RG
λ
-.Ïd,Šâ·K4.3Œ•N•´Gorenstein²"RG-.kRG-
MGorenstein²"©)
0 →N→F
n−1
→···→F
0
→M→0
=Gfd
RG
M≤n.y..
íØ4.4.R´†‚,G´+.•Ä+G˜‡,SLÈ(G
λ
)
λ<µ
,Kk
Ghd
R
G≤sup
λ<µ
Ghd
R
G
λ
.
y²ù´·K4.3˜‡A~,-M= R=Œ.y..
éþã·K4.3ÚíØ4.4¥Øª,˜‡g,¯K´Ÿoœ¹eƒ.édke(Ø.
·K4.5.R´†‚,G´+.•Ä+G˜‡,SLÈ(G
λ
)
λ<µ
.é?¿RG-M,X
J[G: G
λ
]
λ<µ
´k•,@o
Gfd
RG
M= sup
λ<µ
Gfd
RG
λ
M.
y²líØ4.4á=kGfd
RG
M≤sup
λ<µ
Gfd
RG
λ
M.eysup
λ<µ
Gfd
RG
λ
M≤Gfd
RG
M.y
bQ´Gorenstein²"RG-,F´˜‡'uRG-²"©)¦Q
∼
=
Im(F
0
→F
1
),ÏL
• ›F•²"RG
λ
-ÜE/.é?¿SRG
λ
-I,du[G:G
λ
]
λ<µ
´k•,ÏdInd
G
G
λ
I'
Coind
G
G
λ
I´SRG-.ŠâÓF⊗
RG
λ
I
∼
=
F⊗
RG
Ind
G
G
λ
IŒ•,F•´'uRG
λ
-²"
DOI:10.12677/pm.2023.1361801765nØêÆ
ÛŒŒ
©)¿…Q•›¤Gorenstein²"RG
λ
-.Ïd
sup
λ<µ
Gfd
RG
λ
M≤Gfd
RG
M.
y..
íØ4.6.R´†‚,G´+.•Ä+G˜‡,SLÈ(G
λ
)
λ<µ
.XJé?¿λ<µ,
[G: G
λ
]´k•,@o
Ghd
R
G= sup
λ<µ
Ghd
R
G
λ
.
y²ù´·K4.5˜‡A~,-M= R=Œ.y..
5.(؆Ð"
©Ì‡ïÄ+GorensteinÓN‘ê,§´+ÓN‘êí2.©Ì‡?Ø+
GorensteinÓN‘êéXê‚•65,9Ù†f+GorensteinÓN‘êéX.y²+
GorensteinÓN‘ê3‚Frobenius*ÜeäkØC5,±9é[G: G
λ
]
λ<µ
k•+G˜‡,
SLÈ(G
λ
)
λ<µ
,kGhd
R
G=sup
λ<µ
Ghd
R
G
λ
.'u+GorensteinÓN‘ê5ŸÚA^„k–
ïÄ,·•Ï–gCY3ù•¡Uk#?Ð.
ë•©z
[1]Auslander,M. andBridge,M. (1969)StableModuleTheory.American MathematicalSociety,
Providence.
[2]Enochs,E.E.,Jenda,O.M.G.andTorrecillas,B.(1993)GorensteinFlatModules.Journalof
NanjingUniversity(MathematicalBiquarterly),10,1-9.
[3]Enochs,E.E.andJenda,O.M.G.(2011)RelativeHomologicalAlgebra:Volume1.Walterde
Gruyter,Berlin.
[4]Brown,K.S. (1982)CohomologyofGroups(GraduateTextsinMathematics,No.87).Springer,
Berlin-Heidelberg-NewYork.
[5]Stallings, J.(1968)OnTorsion-FreeGroupswithInfinitelyManyEnds.Annals ofMathematics,
88,312-334.https://doi.org/10.2307/1970577
[6]Swan, R.G.(1969) GroupsofCohomological DimensionOne.JournalofAlgebra,12, 585-601.
https://doi.org/10.1016/0021-8693(69)90030-1
[7]Asadollahi,J.,Bahlekeh,A.andSalarian,S.(2009)OntheHierarchyofCohomologicalDi-
mensionsofGroups.JournalofPureandAppliedAlgebra,213,1795-1803.
https://doi.org/10.1016/j.jpaa.2009.01.011
[8]Bahlekeh, A., Dembegioti, F.andTalelli, O. (2009)Gorenstein Dimension andProper Actions.
BulletinoftheLondonMathematicalSociety,41,859-871.
https://doi.org/10.1112/blms/bdp063
DOI:10.12677/pm.2023.1361801766nØêÆ
ÛŒŒ
[9]Emmanouil,I.andTalelli,O.(2014)FinitenessCriteriainGorensteinHomologicalAlgebra.
TransactionsoftheAmericanMathematicalSociety,366,6329-6351.
https://doi.org/10.1090/S0002-9947-2014-06007-8
[10]Emmanouil, I.andTalell, O.(2018)GorensteinDimensionand GroupCohomologywithGroup
RingCoefficients.JournaloftheLondonMathematicalSociety,97,306-324.
https://doi.org/10.1112/jlms.12103
[11]Talelli,O.(2014)OntheGorensteinandCohomologicalDimensionofGroups.Proceedingof
theAmericanMathematicalSociety,142,1175-1180.
https://doi.org/10.1090/S0002-9939-2014-11883-1
[12]Asadollahi,J.,Bahlekeh,A.,Hajizamani,A.andSalarian,S.(2011)OnCertainHomological
InvariantsofGroups.JournalofAlgebra,335,18-35.
https://doi.org/10.1016/j.jalgebra.2011.03.018
[13]Luo,Y.X.andRen,W.(2022)OnGorensteinHomologicalDimensionofGroups.
arXiv.2205.15542
[14]Kasch,F.(1954)GrundlageneinerTheoriederFrobeniuserweiterungen.MathematischeAn-
nalen,127,453-474.https://doi.org/10.1007/BF01361137
[15]Browna,K.A.,Gordon,I.G.andStroppel,C.H.(2008)Cherednik,HeckeandQuantumAlge-
brasasFreeFrobeniusandCalabi-YauExtensions.JournalofAlgebra,319,1007-1034.
https://doi.org/10.1016/j.jalgebra.2007.10.026
[16]Kock,J.(2004)FrobeniusAlgebrasand2DTopologicalQuantumFieldTheories.Cambridge
UniversityPress,Cambridge.https://doi.org/10.1017/CBO9780511615443
[17]Xi,C.(2021)FrobeniusBimodules andFlat-Dominant Dimensions. ScienceChinaMathemat-
ics,64,33-44.https://doi.org/10.1007/s11425-018-9519-2
[18]±,ë“W.Frobenius*ÜeÃL5Úg‡5[J].ìÀŒÆÆ(nƇ),2022,57(10):
52-58.
[19]Hu,J.S.,Li,H.H.,Geng,Y.X.andZhang,D.D.(2020)FrobeniusFunctorsandGorenstein
FlatDimensions.CommunicationsinAlgebra,48,1257-1265.
https://doi.org/10.1080/00927872.2019.1677699
[20]Ren, W.(2018)GorensteinProjectiveModulesandFrobeniusExtensions.Science China Math-
ematics,61,1175-1186.https://doi.org/10.1007/s11425-017-9138-y
[21]Holm,H.(2004)GorensteinHomologicalDimensions.JournalofPureandAppliedAlgebra,
189,167-193.https://doi.org/10.1016/j.jpaa.2003.11.007
[22]
ˇ
Saroch,J.and
ˇ
S
ˇ
tov´ıˇcek,J.(2020)Singular Compactness andDefinability forΣ-Cotorsion and
GorensteinModules.SelectaMathematica,26,ArticleNo.23.
https://doi.org/10.1007/s00029-020-0543-2
DOI:10.12677/pm.2023.1361801767nØêÆ
ÛŒŒ
[23]Bennis,D.(2009)RingsoverWhichtheClassofGorensteinFlatModulesIsClosedunder
Extensions.CommunicationsinAlgebra,37,855-868.
https://doi.org/10.1080/00927870802271862
[24]Yang,G.andLiu,Z.(2012)GorensteinFlatCoversoverGF-ClosedRings.Communications
inAlgebra,40,1632-1640.https://doi.org/10.1080/00927872.2011.553644
[25]Kadison,L.(1999)NewExamplesofFrobeniusExtensions.AmericanMathematicalSociety,
Providence.https://doi.org/10.1090/ulect/014
[26]Zhao,Z.(2019)GorensteinHomologicalInvariantPropertiesunderFrobeniusExtensions.
ScienceChinaMathematics,62,2487-2496.https://doi.org/10.1007/s11425-018-9432-2
[27]Xi,C.andYin,S.(2020)CellularityofCentrosymmetricMatrixAlgebrasandFrobenius
Extensions.LinearAlgebraandItsApplications,590,317-329.
https://doi.org/10.1016/j.laa.2020.01.002
[28]Enochs,E.E.andL`opez-Ramos,J.A.(2002)KaplanskyClasses.RendicontidelSeminario
MatematicodellaUniversit`adiPadova,107,67-79.
DOI:10.12677/pm.2023.1361801768nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.