设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(6),1888-1896
PublishedOnlineJune2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.136193
˜
a
6
Ä
g
Œ
_
X
Ú
Abel
È
©
þ
.
O
ÓÓÓ
ŠŠŠ
1
∗
§§§
|||
uuu
1
§§§
ÁÁÁ
www
2
1
µ
>
bŒ
Æ&
E
ó
§
Æ
§
ô
Ü
µ
2
2
ù
{
H
S
¥
Æ
§
ô
Ü
µ
Â
v
F
Ï
µ
2023
c
5
22
F
¶
¹
^
F
Ï
µ
2023
c
6
23
F
¶
u
Ù
F
Ï
µ
2023
c
6
30
F
Á
‡
|
^
Riccati
•
§
{
§
ï
Ä
˜
a
º
‚
1
/
ª
g
Œ
_
X
Ú
(
r
9)
3
?
¿
3
,
2
,
1
g
õ
‘
ª
6
Ä
e
Abel
È
©
á
"
:
‡
ê
þ
.
"
(
J
•
:
3
3
,
2
,
1
g
õ
‘
ª
6
Ä
e
þ
.
´
13
"
ù
(
J
´
é
ƒ
c
(
J
U
?
"
'
…
c
g
Œ
_
X
Ú
§
Abel
È
©
§
4
•
‚
§
Riccati
•
§
UpperBoundEstimationofAbelian
IntegralforaClassofPerturbed
QuadraticReversibleSystems
YuangenZhan
1
∗
,LihuaYang
1
,LiyunZhu
2
1
Scho olofInformationandEngineering,JingdezhenCeramicUniversity,JingdezhenJiangxi
2
FuliangCountyNan’anMiddleSchool,JingdezhenJiangxi
Received:May22
nd
,2023;accepted:Jun.23
rd
,2023;published:Jun.30
th
,2023
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
Ó
Š
,
|
u
,
Á
w
.
˜
a
6
Ä
g
Œ
_
X
Ú
Abel
È
©
þ
.
O
[J].
n
Ø
ê
Æ
,2023,13(6):
1888-1896.DOI:10.12677/pm.2023.136193
Ó
Š
Abstract
ByusingRiccatiequationmethod,theupperboundestimationofthenumberof
zerosofAbelianintegralforaclassofquadraticreversiblesystem
(
r
9)
ofgenusone
underanypolynomialperturbationofdegree
3
,
2
,
1
isstudied.Theresultisthatthe
upperb oundis
13
underpolynomialperturbationofdegree
3
,
2
,
1
.Theseresultsarean
improvementofthepreviousresults.
Keywords
QuadraticReversibleSystems,AbelianIntegral,LimitCycles,RiccatiEquation
Copyright
c
2023byauthor(s)andHansPublishersInc.
ThisworkislicensedundertheCreativeCommonsAttributionInternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
Ú
Ì
‡
(
Ø
•
Ä
6
Ä
º
‚
1
/
ª
g
Œ
_
X
Ú
˙
x
=
H
y
(
x,y
)
M
(
x,y
)
+
εp
(
x,y
)˙
y
=
−
H
x
(
x,y
)
M
(
x,y
)
+
εq
(
x,y
)
,
(1)
Ù
¥
ε
(0
<ε
1)
´
˜
‡
¢ê
,
H
y
(
x,y
)
M
(
x,y
)
,
H
x
(
x,y
)
M
(
x,y
)
,
p
(
x,y
),
q
(
x,y
)
Ñ
´
'
u
x,y
õ
‘
ª
,
¿
…
max
deg
H
y
(
x,y
)
M
(
x,y
)
,
deg
H
x
(
x,y
)
M
(
x,y
)
=2
,
max
{
deg(
p
(
x,y
))
,
deg(
q
(
x,y
))
}
=
n
(
n
=1
,
2
,
3)
.
ε
=0,
X
Ú
(1)
´
˜
‡
g
Œ
_
X
Ú
,
…
´
˜
‡
Œ
È
X
Ú
,
§
k
˜
‡
¥
%
.
¼
ê
H
(
x,y
)
´
Ù
‘
k
È
©
Ï
f
M
(
x,y
)
˜
‡
Ä
g
È
©
,
•
Ò
´
`
,
Œ
±
½
˜
‡
ë
Y
±
Ï
‚
•
{
Γ
h
}⊂
(
x,y
)
∈
R
2
:
H
(
x,y
)=
h,h
∈4
,
§
‚
´
½
Â
3
•
Œ
m
«
m
4
=(
h
1
,h
2
)
þ
.
©
Ì
‡
)û
¯
K
´
,
é
u
?
¿
ê
ε
,
X
Ú
(1)
Œ
±
l
±
Ï
‚
•
{
Γ
h
}
¥
©
|
Ñ
õ
‡
4
•
‚
?
3
±
Ï
;
?
Û
;
—
«
•
¥
,
X
Ú
(1)
4
•
‚
‡
ê
DOI:10.12677/pm.2023.1361931889
n
Ø
ê
Æ
Ó
Š
Ø
‡
L
±
e
Abel
È
©
I
(
h
)
á
"
:
‡
ê
(
„
©
z
[1–4]).
I
(
h
)=
I
Γ
h
M
(
x,y
)[
q
(
x,y
)
dx
−
p
(
x,y
)
dy
]
,h
∈4
.
(2)
©
[5]
•
k
¦
^
Riccati
•
§
{
ï
Ä
X
Ú
(1)
Abel
È
©
"
:
‡
ê
þ
.
.
©
[6]
ò
º
‚
1
/
ª
g
Œ
_
X
Ú
©
¤
22
a
,
ä
N
•
(
r
1)-(
r
22).
¦
^
Riccati
•
§
•{
:
©
[7]
ï
Ä
n
ž
M
—
î
X
Ú
(
r
1)
,
(
r
2)
"
:
‡
ê
þ
.
¯
K
;
©
[8]
ï
Ä
X
Ú
(
r
3)-(
r
6);
©
[9–13]
ï
Ä
X
Ú
(
r
9)-(
r
13)
9
(
r
16)-(
r
22).
©
2
g
ï
Ä
X
Ú
r
(9),
˜
#
(
J
(
„
L
1).
Table1.
Comparisonbetweenthenewresultsandtheoriginalresults
L
1.
#
(
J
†
(
J
é
'
X
Ú
n
#
(
J
(
J
r931339
r921339
r911339
•
Ä
X
Ú
(
r
9)
˙
x
=
−
xy,
˙
y
=
−
2
3
y
2
+
1
3
2
·
2
4
x
2
−
1
3
2
·
2
4
x.
(3)
§
Ä
g
È
©
•
H
(
x,y
)=
x
−
4
3
(
1
2
y
2
+
1
3
·
2
5
x
2
+
1
3
·
2
4
)=
h,h
∈
(
1
2
5
,
+
∞
)
,
(4)
‘
k
˜
‡
È
©
Ï
f
M
(
x,y
)=
x
−
7
3
.
X
Ú
(
r
9)
´
˜
‡
Œ
È
š
M
—
î
g
X
Ú
,
Ù
A
¤
k
;
Ñ
´
8
g
-
‚
,
§
k
˜
‡
¥
%
(1
,
0),
˜
^
È
©
-
‚
x
=0,
˜
x
±
Ï
;
{
Γ
h
}
(
1
2
5
<h<
+
∞
).
©
z
[10]
‰
Ñ
X
Ú
(
r
9)
Abel
È
©
þ
.
X
e
½
n
.
½
n
1.1
[10]
é
u
?
¿
n
g
õ
‘
ª
p
(
x,y
)
Ú
q
(
x,y
),
X
Ú
(
r
9)
Abel
È
©
I
(
h
)
á
"
:
‡
ê
þ
.
‚
5
•
6
u
n
.
ä
N
œ
¹
•
:
n
>
6
ž
,
þ
.
•
15
n
2
+6
n
−
1
2
−
3;
n
=1
,
2
,
3
,
4
,
5
ž
,
þ
.
•
39.
©
Ì
‡
(
J
•
X
e
½
n
.
½
n
1.2
é
u
?
¿
n
g
õ
‘
ª
p
(
x,y
)
Ú
q
(
x,y
)(
n
=1
,
2
,
3),
X
Ú
(
r
9)
Abel
È
©
I
(
h
)
á
"
:
‡
ê
þ
.
•
:
n
=3
,
2
,
1
ž
,
þ
.
´
13.
#
(
J
é
(
J
´
˜
U
?
(
„
L
1).
©
¡
Ü
©
(
•
:
1
Ü
©
,
¼
Abel
È
©
I
(
h
)
{
ü
L
«
•{
.
1
n
Ü
©
,
ï
Ä
X
Ú
(
r
9)
Abel
È
©
I
(
h
)
†
J
2
3
(
h
)
ƒ
m
'
X
,
¼
ƒ
'
Riccati
•
§
.
1
o
Ü
©
,
¦
^
Riccati
•
§
•
DOI:10.12677/pm.2023.1361931890
n
Ø
ê
Æ
Ó
Š
{
y
²
½
n
1.2.
1
Ê
Ü
©
,
‰
Ñ
˜
‡
{
á
(
Ø
.
2.Abel
È
©
I
(
h
)
{
ü
L
«
b
p
(
x,y
)=
P
0
≤
i
+
j
≤
3
a
i,j
x
i
y
j
Ú
q
(
x,y
)=
P
0
≤
i
+
j
≤
3
b
i,j
x
i
y
j
Ñ
´
?
¿
õ
‘
ª
,
d
(2)
ª
•
,
½
n
1.2
¥
Abel
È
©
I
(
h
)
k
X
e
/
ª
.
I
(
h
)=
I
Γ
h
x
−
7
3
X
0
≤
i
+
j
≤
3
b
i,j
x
i
y
j
dx
−
X
0
≤
i
+
j
≤
3
a
i,j
x
i
y
j
dy
!
,
(5)
•
{
'
,
P
I
i,j
(
h
)=
I
Γ
h
x
i
−
7
3
y
j
dx,
Ù
¥
i
=
−
1
,
0
,
1
,
2
,
3;
j
=0
,
1
,
2
,
3
,
4.
j
=1,
P
I
i,j
(
h
)=
J
i
(
h
)
du
I
Γ
h
x
i
−
7
3
y
j
dy
=
H
Γ
h
x
i
−
7
3
dy
j
+1
j
+1
=
−
i
−
7
3
j
+1
I
Γ
h
x
i
−
7
3
−
1
y
j
+1
dx
=
−
i
−
7
3
j
+1
I
i
−
1
,j
+1
(
h
)
.
Ï
d
,
d
(5)
ª
•
,
Œ
±
ò
I
(
h
)
U
•
I
(
h
)=
X
0
≤
i
≤
3
,
0
≤
j
≤
3
,
0
≤
i
+
j
≤
3
b
i,j
I
i,j
(
h
)+
i
−
7
3
j
+1
X
0
≤
i
≤
3
,
0
≤
j
≤
3
,
0
≤
i
+
j
≤
3
a
i,j
I
i
−
1
,j
+1
(
h
)=
X
−
1
≤
i
≤
3
,
0
≤
j
≤
4
,
0
≤
i
+
j
≤
3
e
i,j
I
i,j
(
h
)
,
(6)
Ù
¥
e
i,j
=
b
i,j
+
3
i
−
4
3
j
a
i
+1
,j
−
1
,
a
i,
−
1
=0(
i
=1
−
4),
b
−
1
,j
=0(
j
=0
−
4).
du
±
Ï
;
Γ
h
'
u
x
¶
é
¡
,
Ï
d
j
•
ó
êž
,
I
i,j
(
h
)=0,
•
I
•
Ä
j
•
Û
ê
œ
¹
.
=
I
(
h
)=
e
−
1
,
1
J
−
1
(
h
)+
e
0
,
1
J
0
(
h
)+
e
1
,
1
J
1
(
h
)+
e
2
,
1
J
2
(
h
)+
e
−
1
,
3
I
−
1
,
3
(
h
)+
e
0
,
3
I
0
,
3
(
h
)
,
(7)
Ù
¥
e
−
1
,
1
=
−
7
a
0
,
0
3
,
e
0
,
1
=
b
0
,
1
−
4
a
1
,
0
3
,
e
1
,
1
=
b
1
,
1
−
a
2
,
0
3
,
e
2
,
1
=
b
2
,
1
+
2
a
3
,
0
3
,
e
−
1
,
3
=
−
7
a
0
,
2
9
,
e
0
,
3
=
b
0
,
3
−
4
a
1
,
2
9
.
©
z
[10]
¥
(18)
Ú
(20)
ª
X
e
µ
I
m,j
(
h
)=
2
jA
3
m
+2
j
−
4
[
I
m
+2
,j
−
2
(
h
)
−
I
m
+1
,j
−
2
(
h
)]
,
(8)
DOI:10.12677/pm.2023.1361931891
n
Ø
ê
Æ
Ó
Š
A
(3
m
+5)
J
m
+2
(
h
)=(3
m
+2)
hJ
m
−
1
2
(
h
)
−
A
(6
m
+1)
J
m
+1
(
h
)
,
(9)
Ù
¥
A
=
1
3
·
2
5
.
3
(8)
¥
,
-
(
m,j
)=(
−
1
,
3)
,
(0
,
3),
Œ
I
−
1
,
3
(
h
)=6
AJ
0
(
h
)
−
6
AJ
1
(
h
)
,
(10)
I
0
,
3
(
h
)=3
AJ
2
(
h
)
−
3
AJ
1
(
h
)
.
(11)
d
(7)(10)(11)
ª
Œ
I
(
h
)=
p
−
1
J
−
1
(
h
)+
p
0
J
0
(
h
)+
p
1
J
1
(
h
)+
p
2
J
2
(
h
)
,
(12)
Ù
¥
p
−
1
=
e
−
1
,
1
,
p
0
=
e
0
,
1
+6
Ae
−
1
,
3
,
p
1
=
e
1
,
1
−
6
Ae
−
1
,
3
−
3
Ae
0
,
3
,
p
2
=
e
2
,
1
+3
Ae
0
,
3
.
2
d
(9)
ª
,
Œ
J
0
(
h
)=
1
5
A
hJ
1
3
(
h
)+
2
5
J
1
(
h
)
,
(13)
J
2
(
h
)=
2
5
A
hJ
1
3
(
h
)
−
1
5
J
1
(
h
)
,
(14)
J
−
1
(
h
)=(
2
231
A
3
h
3
−
1
11
)[
1
5
hJ
1
3
(
h
)+
2
5
J
1
(
h
)]+
1
231
A
2
h
2
J
2
3
(
h
)
.
(15)
d
(12)(13)(14)(15)
ª
,
Œ
I
(
h
)=
α
(
h
)
J
1
3
(
h
)+
β
(
h
)
J
2
3
(
h
)+
γ
(
h
)
J
1
(
h
)
,
(16)
Ù
¥
α
(
h
)=
1
5
A
h
(
a
1
h
3
+
b
1
),
β
(
h
)=
a
2
h
2
,
γ
(
h
)=
a
3
h
3
+
b
3
,
a
1
=
2
231
A
3
,
b
1
=
−
p
−
1
11
+
p
0
+
p
2
,
a
2
=
p
−
1
231
A
2
,
a
3
=
4
p
−
1
5
·
231
A
3
,
b
3
=
−
2
p
−
1
55
+
2
5
p
0
−
1
5
p
2
.
3.Riccati
•
§
!
¥
,
Ì
‡
ï
Ä
Abel
È
©
I
(
h
)
Ú
J
2
3
(
h
)
ƒ
m
'
X
,
Riccati
•
§
.
©
z
[10]
¥
,
é
u
X
Ú
r
(9),
k
X
e
Ú
n
(
Ø
.
Ú
n
3.1
[10]
n
>
1
ž
,
J
(
h
)
÷
v
X
e
Raccita
•
§
B
(
h
)
γ
1
(
h
)
I
0
(
h
)=
B
(
h
)
γ
0
1
(
h
)
I
(
h
)+
S
(
h
)
,S
(
h
)=
E
(
h
)
J
0
1
3
(
h
)+
F
(
h
)
J
0
2
3
(
h
)
,
(17)
DOI:10.12677/pm.2023.1361931892
n
Ø
ê
Æ
Ó
Š
Ù
¥
B
(
h
)=2
h
3
−
54
A
3
=2(
h
−
1
2
5
)(
h
2
+
1
2
5
h
+
1
2
10
)
,
E
(
h
)=
γ
1
(
h
)
α
2
(
h
)
−
B
(
h
)
γ
0
1
(
h
)
α
1
(
h
)
,F
(
h
)=
γ
1
(
h
)
β
2
(
h
)
−
B
(
h
)
γ
0
1
(
h
)
β
1
(
h
)
,
…
α
1
(
h
)=
2
3
hα
(
h
)
−
6
Aβ
(
h
),
β
1
(
h
)=2
hβ
(
h
)
−
3
Aγ
(
h
),
γ
1
(
h
)=
hγ
(
h
)
−
2
Aα
(
h
),
α
2
(
h
)=
B
(
h
)
α
0
1
(
h
)+
h
2
α
1
(
h
)+3
Ahβ
1
(
h
)+9
A
2
γ
1
(
h
),
β
2
(
h
)=
B
(
h
)
β
0
1
(
h
)
−
h
2
β
1
(
h
)
−
9
A
2
α
1
(
h
)
−
3
Ahγ
1
(
h
).
Ú
n
3.2
[10]
n
>
1
ž
,
W
(
h
)=
S
(
h
)
J
0
2
3
(
h
)
,
K
W
(
h
)
÷
v
X
e
Raccita
•
§
B
(
h
)
E
(
h
)
W
0
(
h
)=
−
3
AhW
2
(
h
)+
D
(
h
)
W
(
h
)+
G
(
h
)
,
(18)
Ù
¥
D
(
h
)=
B
(
h
)
E
0
(
h
)
−
2
h
2
E
(
h
)
−
2
h
2
F
(
h
),
G
(
h
)=
B
(
h
)
E
(
h
)
F
0
(
h
)
−
B
(
h
)
E
0
(
h
)
F
(
h
)+2
h
2
E
(
h
)
F
(
h
)+
4
A
2
E
2
(
h
)+
h
2
F
2
(
h
).
Ú
n
3.3
[10]
h
∈
(
1
2
5
,
+
∞
)
ž
,
J
m
(
1
2
5
)=0(
m
=
1
3
,
2
3
,
1);
J
−
1
(
h
)
<
0,
J
0
m
(
h
)
>
0(
m
=
1
3
,
2
3
,
1).
n
=3
,
2
,
1
ž
,
d
Ú
n
3.1
Œ
α
1
(
h
)=
h
2
(
a
4
h
3
+
b
4
)
,β
1
(
h
)=
a
5
h
3
+
b
5
,γ
1
(
h
)=
h
(
a
6
h
3
+
b
6
)
,
(19)
Ù
¥
a
4
=
2
15
A
a
1
,
b
4
=
2
15
A
b
1
−
6
Aa
2
,
a
5
=2
a
2
−
2
Aa
3
,
b
5
=
−
3
Ab
3
,
a
6
=
a
3
−
1
5
a
1
,
b
6
=
b
3
−
1
5
b
1
.
α
2
(
h
)=
h
(
a
7
h
6
+
b
7
h
3
+
c
7
)
,β
2
(
h
)=
h
2
(
a
8
h
3
+
b
8
)
,
Ù
¥
a
7
=11
a
4
,
b
7
=270
A
3
a
4
+3
Aa
5
+9
A
2
a
6
+5
b
4
,
c
7
=3
Ab
5
+9
A
2
b
6
−
108
A
3
b
4
,
a
8
=5
a
5
−
9
A
2
a
4
−
3
Aa
6
,
b
8
=
−
162
A
3
a
5
−
9
A
2
b
4
−
b
5
−
3
Ab
6
.
E
(
h
)=
h
2
(
a
9
h
9
+
b
9
h
6
+
c
9
h
3
+
d
9
)
,F
(
h
)=
a
10
h
9
+
b
10
h
6
+
c
10
h
3
+
d
10
,
(20)
Ù
¥
a
9
=
a
6
a
7
−
8
a
4
a
6
,
b
9
=216
a
4
a
6
A
3
−
8
a
6
b
4
−
2
a
4
b
6
+
a
7
b
6
+
a
6
b
7
,
c
9
=216
a
6
A
3
b
4
+54
a
4
A
3
b
6
+
a
6
c
7
−
2
b
4
b
6
+
b
6
b
7
,
d
9
=
b
6
c
7
+54
A
3
b
4
b
6
,
a
10
=
a
6
a
8
−
8
a
5
a
6
,
b
10
=216
a
5
a
6
A
3
−
8
a
6
b
5
−
2
a
5
b
6
+
a
8
b
6
+
a
6
b
8
,
c
10
=216
a
6
A
3
b
5
+54
a
5
A
3
b
6
−
2
b
5
b
6
+
b
6
b
8
,
d
10
=54
A
3
b
5
b
6
.
2
d
Ú
n
3.2
Œ
G
(
h
)=
h
(
e
1
h
21
+
e
2
h
18
+
e
3
h
15
+
e
4
h
12
+
e
5
h
9
+
e
6
h
6
+
e
7
h
3
+
e
8
)
,
(21)
Ù
¥
e
1
=
−
9
a
2
9
A
2
−
6
a
9
a
10
,
e
2
=108
a
9
a
10
A
3
−
18
a
9
A
2
b
9
−
3
a
2
10
A
−
12
a
9
b
10
,
e
3
=
−
54
a
10
A
3
b
9
+
270
a
9
A
3
b
10
−
18
a
9
A
2
c
9
−
6
a
10
Ab
10
+6
a
10
c
9
−
18
a
9
c
10
−
9
A
2
b
2
9
−
6
b
9
b
10
,
e
4
=
−
216
a
10
A
3
c
9
+
432
a
9
A
3
c
10
−
18
a
9
A
2
d
9
−
6
a
10
Ac
10
+12
a
10
d
9
−
24
a
9
d
10
+108
A
3
b
9
b
10
−
18
A
2
b
9
c
9
−
3
Ab
2
10
−
12
b
9
c
10
,
e
5
=
−
54
A
3
b
10
c
9
−
9
A
2
c
2
9
+270
A
3
b
9
c
10
−
6
Ab
10
c
10
−
6
c
9
c
10
−
378
a
10
A
3
d
9
−
594
a
9
A
3
d
10
−
6
a
10
Ad
10
+
18
A
2
b
9
d
9
+6
b
10
d
9
−
18
b
9
d
10
,
e
6
=
−
216
A
3
b
10
d
9
+432
A
3
b
9
d
10
+108
A
3
c
9
c
10
−
18
A
2
c
9
d
9
−
6
Ab
10
d
10
−
3
Ac
2
10
−
12
c
9
d
10
,
e
7
=
−
54
A
3
c
10
d
9
+270
A
3
c
9
d
10
−
9
A
2
d
2
9
−
6
Ac
10
d
10
−
6
d
9
d
10
,
e
8
=108
A
3
d
9
d
10
−
3
Ad
2
10
DOI:10.12677/pm.2023.1361931893
n
Ø
ê
Æ
Ó
Š
•
Ø
¹
h
~
ê
.
4.Abel
È
©
I
(
h
)
"
:
‡
ê
þ
.
©
z
[10]
¥
==
•
‚•
Ä
¼
ê
α
(
h
),
β
(
h
),
γ
(
h
),
B
(
h
),
E
(
h
)
Ú
G
(
h
)
'
u
h
g
ê
.
y
3
,
ï
Ä
ù
¼
ê
'
u
h
g
ê
Ó
ž
,
„
ò
h
Š
‰
Œ
,
¼
ê
Û
ó
5
•
Ä
?
,
l
ƒ
u
[10]
¥
•
Ð
(
J
.
!
¥
,
ò
¦
^
Riccati
•
§
{
y
²
½
n
1.2.
^
]I
(
h
)
L
«
Abel
È
©
I
(
h
)
3
«
m
4
þ
"
:
‡
ê
.
¤
½
n
1.2
y
²
„
I
‡
^
e
¡
Ú
n
.
Ú
n
4.1
[7]
e
1
w
¼
ê
W
(
h
)
,φ
(
h
)
,ψ
(
h
)
,ξ
(
h
)
Ú
η
(
h
)
÷
v
e
¡
Riccita
•
§
η
(
h
)
W
0
(
h
)=
φ
(
h
)
W
2
(
h
)+
ψ
(
h
)
W
(
h
)+
ξ
(
h
)
,
K
]W
(
h
)
6
]η
(
h
)+
]ξ
(
h
)+1
•
,
4
·
‚
¦
^
Riccita
•
§
{
5
¤
½
n
1.2
y
²
.
y
²
¦
^
Ú
n
3.1,
Ú
n
3.2,
Ú
n
3.3,(17)-(18)
ª
Ú
Ú
n
4.1,
Œ
]I
(
h
)
6
2
]B
(
h
)+
]γ
1
(
h
)+
]E
(
h
)+
]G
(
h
)+2(22)
b
k
:=
h
3
,
d
(20)(21)
ª
E
(
h
)=
h
2
(
a
9
h
9
+
b
9
h
6
+
c
9
h
3
+
d
9
)=
k
2
3
(
a
9
k
3
+
b
9
k
2
+
c
9
k
+
d
9
)=
U
(
k
)
.
(23)
G
(
h
)=
h
(
e
1
h
21
+
e
2
h
18
+
e
3
h
15
+
e
4
h
12
+
e
5
h
9
+
e
6
h
6
+
e
7
h
3
+
e
8
)
=
k
1
3
(
e
1
k
7
+
e
2
k
6
+
e
3
k
5
+
e
4
k
4
+
e
5
k
3
+
e
6
k
2
+
e
7
k
+
e
8
)=
V
(
k
)
.
(24)
¼
ê
U
(
k
)=
k
2
3
(
a
9
k
3
+
b
9
k
2
+
c
9
k
+
d
9
)
3
«
m
(
1
2
5
,
+
∞
)
S
•
õ
k
3
‡
"
:
,
…
é
u
˜
‡
½
Š
k
,
•
U
é
A
•
˜
h
=
k
1
3
∈
(
1
2
5
,
+
∞
),
¤
±
¼
ê
E
(
h
)=
h
2
(
a
9
h
9
+
b
9
h
6
+
c
9
h
3
+
d
9
)
3
«
m
(
1
2
5
,
+
∞
)
S
•
õ
k
3
‡
"
:
,
=
]E
(
h
)=
]
[
h
2
(
a
9
h
9
+
b
9
h
6
+
c
9
h
3
+
d
9
)]
6
3;
Ó
n
Œ
,
3
«
m
(
1
2
5
,
+
∞
)
S
,
¼
ê
G
(
h
)=
h
(
e
1
h
21
+
e
2
h
18
+
e
3
h
15
+
e
4
h
12
+
e
5
h
9
+
e
6
h
6
+
e
7
h
3
+
e
8
)
•
õ
k
7
‡
"
:
,
=
]G
(
h
)=
]h
(
e
1
h
21
+
e
2
h
18
+
e
3
h
15
+
e
4
h
12
+
e
5
h
9
+
e
6
h
6
+
e
7
h
3
+
e
8
)
6
7.
Ó
/
,
d
(19)
ª
,
Œ
]γ
1
(
h
)=
]h
(
a
6
h
3
+
b
6
)=
]
(
a
6
h
3
+
b
6
)
6
1.
Ó
ž
,
5
¿
B
(
h
)=2
h
3
−
54
A
3
=2(
h
−
1
2
5
)(
h
2
+
1
2
5
h
+
1
2
10
)
,
3
«
m
(
1
2
5
,
+
∞
)
S
v
k
"
:
.
d
(22)
ª
Œ
]I
(
h
)
6
2
×
0+1+3+7+2=13
.
DOI:10.12677/pm.2023.1361931894
n
Ø
ê
Æ
Ó
Š
5.
(
Ø
é
u
X
Ú
(
r
9),
©
$
^
Riccati
•
§
{
ï
Ä
Ù
3
?
¿
n
(1
6
n
6
3)
g
õ
‘
ª
6
Ä
e
Abel
È
©
á
"
:
‡
ê
þ
.
,
(
J
•
:
n
=3
,
2
,
1
ž
,
þ
.
•
13.
ù
(
J
´
é
(
J
˜
U
?
.
Ä
7
‘
8
ô
Ü
Ž
˜
e
‰
ï
‘
8
(No.GJJ211346,GJJ201342)
§
µ
½
‰
E
‘
8
(20212GYZD009-
5)
"
ë
•
©
z
[1]
o
«
£
,
o
•
.
f
z
F
Ë
A
1
16
¯
K
9
Ù
ï
Ä
y
G
[J].
ê
Æ
?
Ð
,2010,39(5):513-526.
[2]Han,M.(2013)BifurcationTheoryofLimitCycles.SciencePress,Beijing,310-312.
[3]
ë
˜
.
n
g
Hamilton
•
þ
|
Abel
È
©
[D]:[
Æ
¬
Æ
Ø
©
].
®
:
®
Œ
Æ
,1998.
[4]Li,J.(2003)Hilbert’s16thProblemandBifurcationsofPlanarPolynomialVectorFields.
InternationalJournalofBifurcationandChaos
,
13
,47-106.
https://doi.org/10.1142/S0218127403006352
[5]Horozov,E.andIliev,I.D.(1998)LinearEstimatefortheNumberofZerosofAbelianIntegrals
withCubicHamiltonians.
Nonlinearity
,
11
,1521-1537.
https://doi.org/10.1088/0951-7715/11/6/006
[6]Gautier,S.,Gavrilov,L.andIliev,I.D.(2009)PerturbationsofQuadraticCentersofGenus
One.
DiscreteandContinuousDynamicalSystems
,
25
,511-535.
https://doi.org/10.3934/dcds.2009.25.511
[7]Zhao,Y.,Li,W.,Li,C.andZhang,Z.(2002)LinearEstimateoftheNumberofZerosof
AbelianIntegralsforQuadraticCentersHavingAlmostAllTheirOrbitsFormedbyCubics.
ScienceinChina,SeriesA:Mathematics
,
45
,964-974.https://doi.org/10.1007/BF02879979
[8]Li,W.,Zhao,Y.,Li,C.andZhang,Z.(2002)AbelianIntegralsforQuadraticCentresHaving
AlmostAllTheirOrbitsFormedbyQuartics.
Nonlinearity
,
15
,863-885.
https://doi.org/10.1088/0951-7715/15/3/321
[9]Hong,X.,Xie,S.andChen,L.(2016)EstimatingtheNumberofZerosforAbelianIntegrals
ofQuadraticReversibleCenterswithOrbitsFormedbyHigher-OrderCurves.
International
JournalofBifurcationandChaos
,
26
,ArticleID:1650020.
https://doi.org/10.1142/S0218127416500206
DOI:10.12677/pm.2023.1361931895
n
Ø
ê
Æ
Ó
Š
[10]Hong,X.,Xie,S.andMa,R.(2015)OntheAbelianIntegralsofQuadraticReversibleCenters
withOrbitsFormedbyGenusOneCurvesofHigherDegree.
JournalofMathematicalAnalysis
andApplications
,
429
,924-941.https://doi.org/10.1016/j.jmaa.2015.03.068
[11]Hong,X.,Lu,J.andWang,Y.(2018)UpperBoundsfortheAssociatedNumberofZerosof
AbelianIntegralsforTwoClassesofQuadraticReversibleCentersofGenusOne.
Journalof
AppliedAnalysisandComputation
,
8
,1959-1970.https://doi.org/10.11948/2018.1959
[12]Hong,L.,Lu,J.andHong,X.(2020)OntheNumberofZerosofAbelianIntegralsforaClass
ofQuadraticReversibleCentersofGenusOne.
JournalofNonlinearModelingandAnalysis
,
2
,161-171.
[13]Hong,L.,Hong,X.andLu,J.(2020)ALinearEstimationtotheNumberofZerosforAbelian
IntegralsinaKindofQuadraticReversibleCentersofGenusOne.
JournalofAppliedAnalysis
andComputation
,
10
,1534-1544.https://doi.org/10.11948/20190247
DOI:10.12677/pm.2023.1361931896
n
Ø
ê
Æ