International Journal of Psychiatry and Neurology
Vol.06 No.03(2017), Article ID:21845,9 pages
10.12677/IJPN.2017.63010

Effect of APOE Genotype Polymorphism on Stress in Alzheimer’s Disease

Xiangxiang Qiao1, Aiqin Zhu2

1Medical College of Qinghai University, Xining Qinghai

2Qinghai People’s Hospital, Xining Qinghai

Received: Aug. 7th, 2017; accepted: Aug. 21st, 2017; published: Aug. 28th, 2017

ABSTRACT

Currently, only two genes are closely related to longevity, and APOE is one of them. Apolipoprotein E (APOE) is a plasma protein that plays an important role in the metabolism of lipids and lipoproteins. In humans, there are three major APOE subtypes, APOE2, APOE3, and APOE4. Of these three subtypes, APOE3 is the most common, while APOE4 appears to be associated with age related diseases, including cardiovascular and Alzheimer’s disease, and is associated with an increased risk of death as age increases. The APOE polymorphism affects oxidative stress and the corresponding mitochondrial function. The APOE gene polymorphism is involved in the stress response of the aging process, including endoplasmic reticulum stress and immune function. This review describes the effects of APOE genotype on stress response, focusing on the relationship between mitochondrial function, endoplasmic reticulum stress and immune response.

Keywords:Alzheimer’s Disease, Apolipoprotein E Gene, Oxidative Stress, Endoplasmic Reticulum Stress, Mitochondrial Function

APOE基因型多态性对阿尔茨海默病应激过程的影响

乔向向1,朱爱琴2

1青海大学医学院,青海 西宁

2青海省人民医院,青海 西宁

收稿日期:2017年8月7日;录用日期:2017年8月21日;发布日期:2017年8月28日

摘 要

目前仅有两个基因与长寿密切相关,APOE就是其中之一。载脂蛋白E(APOE)是一种在脂质和脂蛋白代谢中起重要作用的血浆蛋白。在人类有三种主要的APOE亚型,为APOE2,APOE3和APOE4。在这三种亚型中,APOE3是最常见的,而APOE4显示与年龄相关的疾病(包括心血管和阿尔茨海默病)相关,并随着年龄的增加导致死亡风险增加。APOE 基因多态性影响氧化应激和相应的线粒体功能。APOE 基因多态性参与衰老过程的应激反应,包括内质网应激反应和免疫功能。本文阐述APOE基因型对应激反应过程的影响,着重介绍线粒体功能,内质网应激和免疫反应之间的关系。

关键词 :阿尔茨海默病,载脂蛋白E基因,氧化应激,内质网应激,线粒体功能

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

目前,全世界范围内有4680万痴呆患者,预计到2030年将超过7470万,2050年达到1.135亿。阿尔茨海默病(AD)是世界主要的公共健康问题。2015年痴呆医疗费用超过8,180亿美元,到2030年,这一数字估计高达2万亿美元 [1] 。AD是发达国家最常见的痴呆症和最常见疾病之一。AD的临床定义是记忆力逐渐下降和认知功能逐渐丧失。AD的病理学特征是脑皮质萎缩和脑室扩大,以及Aβ蛋白积聚形成的老年斑块和磷酸化tau蛋白形成的突触缠结。目前AD病因尚不明确,普遍认为是一种与遗传、环境等多种因素相关的神经系统变性性疾病,是老年人痴呆的主要原因。高龄是AD最有意义的危险因素,然而有些人群可能在年轻时发展成AD。根据发病时间,AD可以分为两种类型 [2] 。早发性AD(EOAD)通常发病年龄早于65岁,晚发性AD(LOAD)发病年龄在65岁以上。引起EOAD主要遗传突变基因是APP,PSEN1和PSEN2。LOAD也称为散发性AD,高达60%~80%的LOAD有遗传性,但遗传因素和环境因素在LOAD起病、发展和疾病的严重程度具有关键性的作用 [3] 。

载脂蛋白E(APOE)是AD的最强遗传风险因子,APOE基因有三个主要的等位基因(ε2, ε3, ε4),编码不同类型的载脂蛋白E。APOE通过APOE受体和相关蛋白的转运,分泌和调节脂质代谢。一个ε4等位基因(APOEε4)的携带者比非载体发生AD的可能性高出3~4倍 [4] ,特别与AD相关的萎缩区域如(海马),可表现出明显的萎缩 [5] [6] 。在中枢神经系统中,APOE蛋白主要由星形胶质细胞合成和分泌,一部分由小神经胶质细胞分泌 [7] 。小胶质细胞和星形胶质细胞是两种主要类型的神经胶质细胞,主要参与调节大脑病理过程引起的免疫应答。目前对AD的病理,流行病学及遗传学研究很多,一些表明先天免疫参与病理级联反应的早期阶段 [8] ,进而可以导致老年痴呆症。除了APOE的脂质代谢作用外,APOE通过神经胶质细胞介导,导致Aβ的聚集和降解,APOE促进星形胶质细胞的Aβ聚集和降解,并结合凋亡神经元促进小神经胶质细胞吞噬作用 [9] 。

氧化应激通路是一种与人类衰老和长寿有关的重要机制,不平衡的应激反应可以导致细胞和组组织额直接损伤,而氧化应激通路的激活也可以引发疾病的发作,比如神经系统疾病,一个不平衡的氧化应激反应有助于神经细胞死亡。一些报告,遗传背景和生活方式因素可以延缓或延缓与衰老有关的氧化应激反应中有害的过程。然而,所涉及的具体的内源性细胞防御机制尚不清楚,关于不同个体和群体的应激反应变异性的数据甚至更少。事实上,虽然氧化应激通路已被广泛认可,从生物化学和分子生物学的角度来看,研究遗传变异的基因属于氧化应激级联编码蛋白质的作用,如关键点调节NFkB和MAP激酶,仍然是稀缺的,需要提供一个更有效的应激反应的遗传因素很重要。

2. APOE在脂质代谢中的作用及其他功能

2.1. APOE在脂质代谢中的作用

在20世纪70年代,APOE是脂蛋白的组成部分,可以有效调节血浆脂蛋白和胆固醇浓度。血浆75% APOE由肝实质细胞合成,然而其他器官和组织也产生大量的APOE,尤其是大脑,其次是脾,肾,巨噬细胞和脂肪细胞 [10] 。载脂蛋白的主要作用是维持脂蛋白的结构完整性并促进其在血液中的溶解 [11] 。APOE参与了在肝脏组织和非肝组织的脂质代谢平衡,也参与了外源和内源途径的脂蛋白代谢。由胰岛素合成和分泌的乳糜微粒将膳食脂质运输到肝脏和脂肪组织,在循环中获得APOE。肝脏分泌的极低密度脂蛋白(VLDL)颗粒包含APOE,并将内源合成的甘油三酯,磷脂,胆固醇和胆固醇酯转运至外周组织。APOE是低密度脂蛋白(LDL)受体家族的一个高亲和力配体,可促进脂质在肝细胞和肝外细胞的内化。此外由巨噬细胞产生的APOE在反向胆固醇转运中起着关键作用,可将外周组织的过量胆固醇由含APOE的高密度脂蛋白(HDL)颗粒被重新运输到肝脏予以消除 [12] [13] 。通过这些功能,APOE参与了脂质和胆固醇的体内平衡。

2.2. APOE的其他功能

APOE在脂质代谢中的作用不能完全解释体外APOE的功能和对APOE基因敲除(KO)小鼠的研究,并且发现APOE参与了衰老过程。APOE KO小鼠表达不同的脂蛋白谱,并可成发展动脉粥样硬化,这使它们成为心血管疾病(CVD)研究的有力工具 [14] 。APOE基因敲除小鼠可患有神经系统疾病、II型糖尿病和免疫应答缺陷疾病,使它们容易感染细菌和诱导LPS死亡 [15] 。APOE KO小鼠表达较高水平的氧化应激标志物,而在体外研究APOE具有抗氧化作用。氧化应激和损伤对寿命的影响存在着一些争议,但其对某些(年龄相关)疾病影响是无可争议的 [16] 。研究发现氧化应激增加APOE在脂肪细胞分泌,APOE过度表达会保护细胞免受过氧化氢诱导引起产生损伤 [17] 。APOE基因的多种表型,导致合成APOE蛋白质有多种性状。APOE蛋白质的多重功能是细胞应激反应和衰老过程的有效调节剂。

人类APOE基因位于染色体19的长臂上,紧邻载脂蛋白C-I和C-II的基因。低密度脂蛋白受体(LDLR)位于同一染色体的短臂上,表明19号染色体在脂蛋白代谢中起重要作用 [18] 。APOE基因由四个外显子组成。大多数血浆APOE是分泌型唾液酸化 [19] 。APOE基因产生了三个主要的等位基因ε2,ε3和ε4。这些等位基因编码6个主要的APOE基因型(3个纯合子和3个杂合子)。在全世界范围内,APOE基因位点的等位基因频率分别为ε2为0%~20%,ε3为60%~90%,ε4等位基因为10%~20% [20] 。无脂化的APOE是由两个独立结构折叠形成,它们被铰链区分开。LDL受体结合域末端以四螺旋束排列形成,C末端结构域含有两个亲性α-螺旋,它介导APOE与脂蛋白的高亲和力结合 [21] 。APOE3和APOE2优先结合高密度脂蛋白(HDL),而载脂蛋白E4结合VLDL颗粒 [22] 。APOE不同亚型对不同的疾病有不同的易感性。 APOE2可增加血浆胆固醇和甘油三酯的水平,因而APOE2成为III型高脂血症的危险因素 [23] 。APOEε4载体使血浆甘油三酯和LDL胆固醇浓度较高,APOE4与心血管疾病(CVD)的风险增加有关。

3. APOE基因型和氧化应激的关系

APOE基因敲除小鼠得出了APOE具有抗氧化性能,在体外研究发现了不同亚型具有不同抗氧化能力,顺序为APOE2 > APOE3 > APOE4 [24] 。大量研究已经证明了APOE基因型与氧化应激之间的关系 [25] 。与APOE3和APOE2相比,APOE4是一个较弱的抗氧化剂,APOE4在体外和体内表达不能有效保护细胞免受氧化毒害和死亡 [26] 。氧化应激使APOE4和APOE3表达巨噬细胞能力提高 [27] 。与体外情况相比,在体内APOE基因型与氧化应激关联性不一致。一些报告显示,APOE4与氧化应激的标志物呈正相关,其他研究报告说两种APOE异构体之间没有显着差异(类似水平的APOE3和APOE4靶向替代(TR)小鼠中的异雄甾烷和硫代巴比妥酸反应物质) [28] 。APOE4的不利影响与CVD风险有关,可能取决于附加刺激的共同存在,如烟草烟雾或升高的血浆胆固醇 [29] 。根据最近对APOE基因型与冠心病(CHD)的荟萃分析,没有明确证证明吸烟是APOE基因型/CHD风险关联的修饰物 [30] 。研究APOE基因型对抗氧化剂的影响,导致APOE TR小鼠和AD患者脑中酶活性产生相互矛盾的结果 [31] 。在APOE4的存在下Nrf2基因表达可能会减弱,同样在小鼠各组织中TR,APOE4与APOE3表达抗氧化和抗炎金属硫蛋白水平较低 [32] 。血清对氧磷酶1(PON1)活性可以诱导APOE的活性 [33] ,APOE4可使PON1表达水平降低。APOE和PONI相互作用的关系尚不明确。有研究报告PON1与APOE3-和APOE4-HDL结合,具有相似的活性和两种复合物抑制LDL氧化到相似程度 [34] 。

4. APOE基因型与内质网应激和线粒体功能的关系

APOE同种型与氧化应激的差异相关性和潜在APOE基因型依赖性调节,越来越多的证据表明APOE基因型以APOE异构体的方式影响线粒体和内质网(ER)应激过程。线粒体功能障碍和泛素蛋白酶体干扰系统中,这两个引起的氧化应激可能是衰老过程的标志。这两种系统与各种年龄相关疾病有关,特别是神经退行性疾病,如AD和帕金森病 [35] 。内质网和线粒体在结构和功能上相互关联 [36] ,在结构上,它们的相互作用通过线粒体相关的ER膜(MAM)与线粒体融合蛋白2(Mfn2)作为直接锚定蛋白。内质网和线粒体的作用部位是在MAM的线粒体和ER位点 [36] [37] ,通过Ca2+通过钙转运通道电压依赖性阴离子通道1(VDAC1)和肌醇1,4,5-三磷酸受体Ca2+通道(IP3R)进行交换。故内质网功能障碍容易波及到线粒体,反之线粒体功能障碍容易波及到内质网。两种细胞器都可促进内源性生产活性氧的产生 [38] 。

内质网介导膜蛋白分泌和合成,翻译后修饰和折叠,在这些过程高度依赖于区域内的钙含量、氧化环境和特异蛋白质等,即分子伴侣可促进蛋白质进行折叠。内质网的钙水平,氧化还原状态以及代谢或炎症改变等可能导致内质网功能受损或对折叠蛋白质的需求增加。内质网应激是指内质网折叠能力超过内质网腔中未折叠或错误折叠的蛋白质 [38] 。反过来为了维持体内平衡,细胞激活未折叠蛋白反应(UPR),是通过抑制翻译同时激活UPR靶基因转录。未折叠蛋白反应是基于ER应力传感,通过三个ER跨膜蛋白(丝氨酸/苏氨酸-蛋白激酶/内切核糖核酸酶(IRE1ɑ),真核翻译起始因子2-α激酶3(PERK)和激活转录因子6(ATF6)),当分子伴侣78kDa葡萄糖调节蛋白(GRP78;作为腔抑制剂起作用)释放时,激活特异性下游信号发生级联反应。IRE1ɑ激活细胞质mRNA的剪接,如IRE1ɑ可激活XBP1(S)的mRNA,X-box结合蛋白1(XBP1)的。PERK通过抑制翻译起始因子2A(EIF2A),进而抑制其他蛋白质的翻译,同时有激活转录因子4(ATF4)转录。ATF6在激活后被蛋白水解。ATF6(ATF6 p50),XBP1(S)和ATF4的细胞质部分转运入细胞核并诱导转录激活UPR靶基因,包括GRP78。激活延长的UPR通过诱导促凋亡因子DNA转录,促凋亡因子DNA转录产物诱导转录因子3蛋白损伤,进而导致细胞死亡 [36] 。所有UPR三种途径可以通过激活NF-kB来触发炎症过程 [39] 。

推测内质网可错误折叠APOE4的结构,随后导致激活内质网应激反应 [40] 。还有通过分泌途径APOE4的不同折叠状态可以影响运输 [41] 。内质网应激是APOE4致病的早期特征。APOE4与APOE3 TR小鼠相比,早在4月龄时大脑中EIF2A的磷酸化增加,并且已经显示轻度认知功能障碍 [42] 。在APOE转基因小鼠的神经母细胞瘤细胞和原代神经元中,APOE4细胞内运输可能受损,这个过程不伴有内质网应激反应。APOE基因型与脑外组织内质网应激关系是有限的,研究APOE基因型对腹膜巨噬细胞的内质网应激的关系,两者的关系产生相互矛盾的结果。Eberléet等 [43] 发现内质网应激不受APOE4结构域的影响,并观察到Arg61 APOE小鼠的腹腔巨噬细胞的相互作用和APOE分泌减少引起的细胞功能障碍。在转染的人肝细胞观察到APOE4的运输速度降低 [44] 。对人星形胶质细胞转录研究发现了ER应激标志物(例如ATF4)与APOE基因型的差异表达 [45] 。

氧化损伤是一种蛋白质体内平衡受损的一个途径,发现氧化损伤与线粒体功能障碍密切相关。线粒体的主要作用是产生能量,通过氧化磷酸化(OXPHOS)形成三磷酸腺苷(ATP)形式。线粒体的其他功能包括调节代谢物水平,金属代谢和体内Ca2+平衡 [46] 。在ATP需求增加的情况下,线粒体合成会相应地增加。过氧化物酶体增殖活化受体(PPAR),PPAR活化剂(例如,PGC-1ɑ)和核呼吸因子(NRF)在这个过程中起关键作用,其是通过能量传感器一磷酸腺苷(AMP)诱导激活的蛋白激酶(AMPK)和Sirtuin 1(SIRT1 )。线粒体的结构和功能紧密相关,依赖于裂变的协同作用和融合作用 [46] [47] 。线粒体在应激条件参与凋亡, Ca2+过载和/或氧化应激启动了凋亡级联反应发生,包括线粒体释放细胞色素C。重要的是有证据支持线粒体功能缺陷的假设,包括OXPHOS缺陷,在一个组织中的假设可能通过尚未完全了解的机制向整个生物体发出信号 [46] 。由于APOEε4与AD强关联性,在AD模型中发现了线粒体功能障碍与AD发病早期的关系,也是APOE4致病性的早期征兆 [48] 。正电子发射断层扫描(PET)研究发现APOEε4载体携带者的大脑中异常糖代谢 [49] [50] ,大脑的正常的功能及作用依赖于葡萄糖代谢,而葡萄糖是OXPHOS的主要底物。因此APOEε4可能通过影响线粒体的糖代谢影响功能的。细胞培养实验发现APOE4合成的神经元比APOE3更容易发生蛋白水解 [51] 。锌在体外可以诱导APOE4蛋白水解和降解,在携带ε4等位基因的AD患者检测到血清中较高水平的锌 [52] 。APOE4蛋白水解导致神经毒性C-末端片段的产生增加,特别是APOE片段(1-272)。APOE4(1-272)片段直接与线粒体复合物III和IV相互作用,可导致两种呼吸复合物的活性降低,进而影响线粒体的产生能量 [53] 。还有在一项研究中,APOEε4通过膳食干预改善线粒体功能与姜黄素无关 [54] ,补充乙酰基左旋肉碱和硫辛酸(硫辛酸是线粒体丙酮酸脱氢酶和α-酮戊二酸脱氢酶的辅酶),可导致APOE4 TR小鼠的认知功能得到改善 [55] ,因此APOEε4对膳食因子的反应可能取决于物质的来源。APOE基因型和线粒体功能之间的联系,是通过APOE基因和其相邻区域连锁不平衡(LD),其在TOMM40基因的三个SNP和APOEε4等位基因有高LD水平 [56] 。

5. APOE基因型和炎症反应

蛋白质的功能很大一部分取决于其空间结构,而其结构是多肽链折叠的结果。这个过程偶尔会发生错误,蛋白质结构会异常。UPR是细胞应对蛋白折叠错误的一系列信号传递过程。其结果是蛋白质生成减慢,非折叠蛋白被降解,蛋白质折叠功能加强等等。在某些疾病中,由于病理造成的细胞损伤或刺激会造成非折叠蛋白增多,对细胞功能会有影响,UPR作为一种应对措施,是有保护作用的。炎症涉及多种与年龄有关的慢性疾病,如AD。NF-kB和丝裂原活化蛋白激酶MAPK (p38 MAPK和JNK)是APOE炎症反应主要信号转导途径 [57] ,UPR可能通过激活促炎转录因子NF-kB来触发的 [58] 。在对APOE4与APOE3 TR小鼠研究中,发现原代小胶质细胞有NF-κB活化和前列腺素2(PGE2)通路上调,但抗炎TREM2 (在骨髓细胞2上表达的触发受体)的表达被APOE4抑制,同时氧化应激和线粒体功能障碍参与炎症免疫应答 [59] 。受损的线粒体释放促炎物质,最反过来炎症反应加剧内质网应激和线粒体功能障碍。APOE4可以在体外和体内抑制小胶质细胞的活化和抑制外周巨噬细胞释放促炎细胞因子和炎症介质 [60] 。

6. 结语

APOE基因型多态性对阿尔茨海默病应激过程是复杂的,在很大程度上仍然未知。更好的理解这些机制可能为研究人员提供方向,为进一的预防和治疗提供理论基础,确保早期诊断和治疗,增加阿尔茨海默病的风险的意识。一些研究发现补充抗氧化剂治疗老年慢性疾病治疗的报道,进一步干预入氧化应激反应可能刺激发展的药物能够调节内源性细胞防御机制。这种创新的方法正在进行导致慢性组织损伤的疾病,如神经退行性疾病。尤其是老年人患有不同的疾病,由于氧化应激负担的人,进一步的好处可能来自基因调节剂的研究,更好地解决搜索分子,帮助个人控制氧化应激水平和有利于健康的老龄化。总之,遗传背景无可否认,在个体抵抗氧化应激起着重要的作用。另一方面,我们可以做很多事情来减轻机体承受的压力负荷。特别是,老年人健康老龄化的一个简单策略应该是采取适度的体力活动的生活方式,并确保摄入足够的膳食抗氧化剂,以减少氧化应激到一个基本水平。优化营养是避免或延缓与年龄有关的疾病的发病和保持健康的重要因素。社会服务和政策旨在改善健康状况可以预见,作为药物治疗的辅助手段,社会和行为干预,保证有规律的体力活动和社会支持,以降低整体慢性应激负担,提供心理和身体健康。

文章引用

乔向向,朱爱琴. APOE基因型多态性对阿尔茨海默病应激过程的影响
Effect of APOE Genotype Polymorphism on Stress in Alzheimer’s Disease[J]. 国际神经精神科学杂志, 2017, 06(03): 56-64. http://dx.doi.org/10.12677/IJPN.2017.63010

参考文献 (References)

  1. 1. Alzheimer’s Disease International Consortium. World Alzheimer Report 2015. http://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf

  2. 2. Blennow, K., de Leon, M.J. and Zetterberg, H. (2006) Alzheimer’s Disease. Lancet, 368, 387-403. https://doi.org/10.1016/S0140-6736(06)69113-7

  3. 3. Gatz, M., Reynolds, C.A., Fratiglioni, L., et al. (2006) Role of Genes and Environments for Explaining Alzheimer Disease. Archives of General Psychiatry, 63, 168-174. https://doi.org/10.1001/archpsyc.63.2.168

  4. 4. Liu, C.C., Kanekiyo, T., Xu, H. and Bu, G. (2013) Apolipoprotein E and Alzheimer Disease: Risk, Mechanisms and Therapy. Nature Reviews Neurology, 9, 106-118. https://doi.org/10.1038/nrneurol.2012.263

  5. 5. Gispert, J.D., Rami, L., Sanchez-Benavides, G., Falcon, C., Tucholka, A., Rojas, S., et al. (2015) Nonlinear Cerebral Atrophy Patterns across the Alzheimer’s Disease Continuum: Impact of APOE4 Genotype. Neurobiology of Aging, 36, 2687-2701. https://doi.org/10.1016/j.neurobiolaging.2015.06.027

  6. 6. Liu, Y., Yu, J.T., Wang, H.F., Han, P.R., Tan, C.C., Wang, C., et al. (2015) APOE Genotype and Neuroimaging Markers of Alzheimer’s Disease: Systematic Review and Meta-Analysis. Journal of Neurology, Neurosurgery, & Psychiatry, 86, 127-134. https://doi.org/10.1136/jnnp-2014-307719

  7. 7. Kim, J., Basak, J.M. and Holtzman, D.M. (2009) The Role of Apolipoprotein E in Alzheimer’s Disease. Neuron, 63, 287-303. https://doi.org/10.1016/j.neuron.2009.06.026

  8. 8. Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., et al. (2015) Neuroinflammation in Alzheimer’s Disease. The Lancet Neurology, 14, 388-405. https://doi.org/10.1016/S1474-4422(15)70016-5

  9. 9. Atagi, Y., Liu, C.C., Painter, M.M., Chen, X.F., Verbeeck, C., Zheng, H., et al. (2015) Apo Poprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The Journal of Biological Chemistry, 290, 26043-26050. https://doi.org/10.1074/jbc.M115.679043

  10. 10. Getz, G.S. and Reardon, C.A. (2009) Apoprotein E as a Lipid Transport and Signaling Protein in the Blood, Liver, and Artery Wall. The Journal of Lipid Research, 50, S156-S161. https://doi.org/10.1194/jlr.R800058-JLR200

  11. 11. Ang, L.S., Cruz, R.P., Hendel, A. and Granville, D.J. (2008) Apolipoprotein E, an Important Player in Longevity and Age-Related Diseases. Experimental Gerontology, 43, 615-622.

  12. 12. Matsuura, F., Wang, N., Chen, W., Jiang, X.C. and Tall, A.R. (2006) HDL from CETP-Deficient Subjects Shows Enhanced Ability to Promote Cholesterol Efflux from Macrophages in an apoE- and ABCG1-Dependent Pathway. Journal of Clinical Investigation, 116, 1435-1442. https://doi.org/10.1172/JCI27602

  13. 13. Zanotti, I., Pedrelli, M., Pot, F., Stomeo, G., Gomaraschi, M., Calabresi, L. and Bernini, F. (2011) Macrophage, but Not Systemic, Apolipoprotein E Is Necessary for Macrophage Reverse Cholesterol Transport in Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 74-80. https://doi.org/10.1161/ATVBAHA.110.213892

  14. 14. Eichner, J.E., Dunn, S.T., Perveen, G., Thompson, D.M., Stewart, K.E. and Stroehla, B.C. (2002) Apolipoprotein E Polymorphism and Cardiovascular Disease: A Huge Review. American Journal of Epidemiology, 155, 487-495. https://doi.org/10.1093/aje/155.6.487

  15. 15. Van Oosten, M., Rensen, P.C.N., Van Amersfoort, E.S., Van Eck, M., Van Dam, A.-M., Brev, J.J.P., Vogel, T., Panet, A., Van Berkel, T.J.C. and Kuiper, J. (2001) Apolipoprotein E Protects against Bacterial Lipopolysaccharide-Induced Lethality. A New Therapeutic Approach to Treat Gram-Negative Sepsis. The Journal of Biological Chemistry, 276, 8820-8824. https://doi.org/10.1074/jbc.M009915200

  16. 16. Ikeno, Y. (2015) New Insights and Current Concepts of the Oxidative Stress Theory of Aging. Archives of Biochemistry and Biophysics, 576, 1.

  17. 17. Tarnus, E., Wassef, H., Carmel, J.F., Rondeau, P., Roche, M., Davignon, J., Bernier, L. and Bourdon, E. (2009) Apolipoprotein E Limits Oxidative Stress-Induced Cell Dysfunctions in Human Adipocytes. FEBS Letters, 583, 2042-2048.

  18. 18. Papaioannou, I., Simons, J.P. and Owen, J.S. (2012) Targeted in Situ Gene Correction of Dysfunctional APOE Alleles to Produce Atheroprotective Plasma ApoE3 Protein. Cardiology Research and Practice, 2012, Article ID: 148796. https://doi.org/10.1155/2012/148796

  19. 19. Lee, Y., Kockx, M., Raftery, M.J., Jessup, W., Griffith, R. and Kritharides, L. (2010) Glycosylation and Sialylation of Macrophage-Derived Human Apolipoprotein E Analyzed by SDS-PAGE and Mass Spectrometry: Evidence for a Novel Site of Glycosylation on Ser290. Molecular & Cellular Proteomics, 9, 1968-1981. https://doi.org/10.1074/mcp.M900430-MCP200

  20. 20. Singh, P.P., Singh, M. and Mastana, S.S. (2006) APOE Distribution in World Populations with New Data from India and the UK. Annals of Human Biology, 33, 279-308. https://doi.org/10.1080/03014460600594513

  21. 21. Frieden, C. and Garai, K. (2012) Structural Differences between apoE3 and apoE4 May Be Useful in Developing Therapeutic Agents for Alzheimer’s Disease. Proceedings of the National Academy of Sciences, 109, 8913-8918. https://doi.org/10.1073/pnas.1207022109

  22. 22. Dong, L.M., Wilson, C., Wardell, M.R., Simmons, T., Mahley, R.W., Weisgraber, K.H. and Agard, D.A. (1994) Human Apolipoprotein E. Role of Arginine 61 in Mediating the Lipoprotein Preferences of the E3 and E4 Isoforms. The Journal of Biological Chemistry, 269, 22358-22365.

  23. 23. Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L. and Pericak-Vance, M.A. (1993) Gene Dose of Apolipoprotein E Type 4 Allele and the Risk of Alzheimer’s Disease in Late Onset Families. Science, 261, 921-923. https://doi.org/10.1126/science.8346443

  24. 24. Miyata, M. and Smith, J.D. (1996) Apolipoprotein E Allele-Specific Antioxidant Activity and Effects on Cytotoxicity by Oxidative Insults and Beta-Amyloid Peptides. Nature Genetics, 14, 55-61. https://doi.org/10.1038/ng0996-55

  25. 25. Jofre-Monseny, L., Minihane, A.M. and Rimbach, G. (2008) Impact of apoE Genotype on Oxidative Stress, Inflammation and Disease Risk. Molecular Nutrition & Food Research, 52, 131-145. https://doi.org/10.1002/mnfr.200700322

  26. 26. Pocernich, C.B., Sultana, R., Hone, E., Turchan, J., Martins, R.N., Calabrese, V., Nath, A. and Butterfield, D.A. (2004) Effects of Apolipoprotein E on the Human Immunodeficiency Virus Protein Tat in Neuronal Cultures and Synaptosomes. Journal of Neuroscience Research, 77, 532-539. https://doi.org/10.1002/jnr.20182

  27. 27. Jofre-Monseny, L., de Pascual-Teresa, S., Plonka, E., Huebbe, P., Boesch-Saadatmandi, C., Minihane, A.M. and Rimbach, G. (2007) Differential Effects of Apolipoprotein E3 and E4 on Markers of Oxidative Status in Macrophages. British Journal of Nutrition, 97, 864-871. https://doi.org/10.1017/S0007114507669219

  28. 28. Jofre-Monseny, L., Huebbe, P., Stange, I., Boesch-Saadatmandi, C., Frank, J., Jackson, K., Minihane, A.-M. and Rimbach, G. (2008) Influence of Apolipoprotein E Genotype and Dietary Alpha-Tocopherol on Redox Status and C-Reactive Protein Levels in Apolipoprotein E3 and E4 Targeted Replacement Mice. British Journal of Nutrition, 100, 44-53. https://doi.org/10.1017/S000711450788634X

  29. 29. Talmud, P.J., Stephens, J.W., Hawe, E., Demissie, S., Cupples, L.A., Hurel, S.J., Humphries, S.E. and Ordovas, J.M. (2005) The Significant Increase in Cardiovascular Disease Risk in APOE 4 Carriers Is Evident Only in Men Who Smoke: Potential Relationship between Reduced Antioxidant Status and ApoE4. Annals of Human Genetics, 69, 613-622. https://doi.org/10.1111/j.1529-8817.2005.00205.x

  30. 30. Holmes, M.V., Frikke-Schmidt, R., Melis, D., Luben, R., Asselbergs, F.W., Boer, J.M.A., Cooper, J., Palmen, J., Horvat, P., Engmann, J., Li, K.W., Onland-Moret, N.C., Hofker, M.H., Kumari, M., Keating, B.J., Hubacek, J.A., Adamkova, V., Kubinova, R., Bobak, M., Khaw, K.T., Nordestgaard, B.G., Wareham, N., Humphries, S.E., Langenberg, C., Tybjaerg-Hansen, A. and Talmud, P.J. (2014) A Systematic Review and Meta-Analysis of 130,000 Individuals Shows Smoking Does Not Modify the Association of APOE Genotype on Risk of Coronary Heart Disease. Atherosclerosis, 237, 5-12.

  31. 31. Ramassamy, C., Averill, D., Beffert, U., Theroux, L., Lussier-Cacan, S., Cohn, J.S., Christen, Y., Schoofs, A., Davignon, J. and Poirier, J. (2000) Oxidative Insults Are Associated with Apolipoprotein E Genotype in Alzheimer’s Disease Brain. Neurobiology of Disease, 7, 23-37. https://doi.org/10.1006/nbdi.1999.0273

  32. 32. Graeser, A.C., Huebbe, P., Storm, N., Höppner, W., Döring, F., Wagner, A.E. and Rimbach, G. (2012) Apolipoprotein E Genotype Affects Tissue Metallothionein Levels: Studies in Targeted Gene Replacement Mice. Genes & Nutrition, 7, 247-255. https://doi.org/10.1007/s12263-012-0282-x

  33. 33. Boesch-Saadatmandi, C., Niering, J., Minihane, A.M., Wiswedel, I., Gardeman, A., Wolffram, S. and Rimbach, G. (2010) Impact of Apolipoprotein E Genotype and Dietary Quercetin on Paraoxonase 1 Status in apoE3 and apoE4 Transgenic Mice. Atherosclerosis, 211, 110-113.

  34. 34. Gaidukov, L., Viji, R.I., Yacobson, S., Rosenblat, M., Aviram, M. and Tawfik, D.S. (2010) ApoE Induces Serum Paraoxonase PON1 Activity and Stability Similar to ApoA-I. Biochemistry, 49, 532-538. https://doi.org/10.1021/bi9013227

  35. 35. Ross, J.M., Olson, L. and Coppotelli, G. (2015) Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin? International Journal of Molecular Sciences, 16, 19458-19476. https://doi.org/10.3390/ijms160819458

  36. 36. Bravo, R., Gutierrez, T., Paredes, F., Gatica, D., Rodriguez, A.E., Pedrozo, Z., Chiong, M., Parra, V., Quest, A.F.G., Rothermel, B.A. and Lavandero, S. (2012) Endoplasmic Reticulum: ER Stress Regulates Mitochondrial Bioenergetics. The International Journal of Biochemistry & Cell Biology, 44, 16-20.

  37. 37. Brewer, J.W. (2014) Regulatory Crosstalk within the Mammalian Unfolded Protein Response. Cellular and Molecular Life Sciences, 71, 1067-1079. https://doi.org/10.1007/s00018-013-1490-2

  38. 38. Cao, S.S. and Kaufman, R.J. (2014) Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease. Antioxidants & Redox Signaling, 21, 396-413. https://doi.org/10.1089/ars.2014.5851

  39. 39. Zhong, N., Ramaswamy, G. and Weisgraber, K.H. (2009) Apolipoprotein E4 Domain Interaction Induces Endoplasmic Reticulum Stress and Impairs Astrocyte Function. The Journal of Biological Chemistry, 284, 27273-27280. https://doi.org/10.1074/jbc.M109.014464

  40. 40. Zhong, N., Ramaswamy, G., Weisgraber, K.H. (2009) Apolipoprotein E4 Domain Interaction Induces Endoplasmic Reticulum Stress and Impairs Astrocyte Function. The Journal of Biological Chemistry, 284, 27273-27280.

  41. 41. Brodbeck, J., McGuire, J., Liu, Z., Meyer-Franke, A., Balestra, M.E., Jeong, D.E., Pleiss, M., McComas, C., Hess, F., Witter, D., Peterson, S., Childers, M., Goulet, M., Liverton, N., Hargreaves, R., Freedman, S., Weisgraber, K.H., Mahley, R.W. and Huang, Y. (2011) Structure-Dependent Impairment of Intracellular Apolipoprotein E4 Trafficking and Its Detrimental Effects Are Rescued by Small-Molecule Structure Correctors. The Journal of Biological Chemistry, 286, 17217-17226. https://doi.org/10.1074/jbc.M110.217380

  42. 42. Segev, Y., Michaelson, D.M. and Rosenblum, K. (2013) ApoE 4 Is Associated with eIF2 Phosphorylation and Impaired Learning in Young Mice. Neurobiology of Aging, 34, 863-872.

  43. 43. Eberl, D., Kim, R.Y., Luk, F.S., De Mochel, N.S.R., Gaudreault, N., Olivas, V.R., Kumar, N., Posada, J.M., Birkeland, A.C., Rapp, J.H. and Raffai, R.L. (2012) Apolipoprotein E4 Domain Interaction Accelerates Diet-Induced Atherosclerosis in Hypomorphic Arg-61 Apoe Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1116-1123. https://doi.org/10.1161/ATVBAHA.112.246389

  44. 44. Sabaretnam, T., Harris, J.M., Kockx, M., Witting, P.K., Le Couteur, D.G. and Kritharides, L. (2009) Effects of Hydrogen Peroxide and Apolipoprotein E Isoforms on Apolipoprotein E Trafficking in HepG2 Cells. Clinical and Experimental Pharmacology and Physiology, 36, 96-102. https://doi.org/10.1111/j.1440-1681.2009.05306.x

  45. 45. Simpson, J.E., Ince, P.G., Shaw, P.J., Heath, P.R., Raman, R., Garwood, C.J., Gelsthorpe, C., Baxter, L., Forster, G., Matthews, F.E., Brayne, C. and Wharton, S.B. (2011) Microarray Analysis of the Astrocyte Transcriptome in the Aging Brain: Relationship to Alzheimer’s Pathology and APOE Genotype. Neurobiology of Aging, 32, 1795-1807.

  46. 46. Nunnari, J. and Suomalainen, A. (2012) Mitochondria: In Sickness and in Health. Cell, 148, 1145-1159.

  47. 47. Lopez-Mejia, I.C. and Fajas, L. (2015) Cell Cycle Regulation of Mitochondrial Function. Current Opinion in Cell Biology, 33, 19-25.

  48. 48. Chen, H.K., Ji, Z.S., Dodson, S.E., Miranda, R.D., Rosenblum, C.I., Reynolds, I.J., Freedman, S.B., Weisgraber, K.H., Huang, Y. and Mahley, R.W. (2011) Apolipoprotein E4 Domain Interaction Mediates Detrimental Effects on Mitochondria and Is a Potential Therapeutic Target for Alzheimer Disease. The Journal of Biological Chemistry, 286, 5215-5221. https://doi.org/10.1074/jbc.M110.151084

  49. 49. Mosconi, L., Nacmias, B., Sorbi, S., De Cristofaro, M.T.R., Fayazz, M., Tedde, A., Bracco, L., Herholz, K. and Pupi, A. (2004) Brain Metabolic Decreases Related to the Dose of the ApoE e4 Allele in Alzheimer’s Disease. Journal of Neurology, Neurosurgery, & Psychiatry, 75, 370-376. https://doi.org/10.1136/jnnp.2003.014993

  50. 50. Mosconi, L., Herholz, K., Prohovnik, I., Nacmias, B., De Cristofaro, M.T.R., Fayyaz, M., Bracco, L., Sorbi, S. and Pupi, A. (2005) Metabolic Interaction between ApoE Genotype and Onset Age in Alzheimer’s Disease: Implications for Brain Reserve. Journal of Neurology, Neurosurgery, & Psychiatry, 76, 15-23. https://doi.org/10.1136/jnnp.2003.030882

  51. 51. Tamboli, I.Y., Heo, D. and Rebeck, G.W. (2014) Extracellular Proteolysis of Apolipoprotein E (apoE) by Secreted Serine Neuronal Protease. PLoS ONE, 9, e93120. https://doi.org/10.1371/journal.pone.0093120

  52. 52. Xu, H., Gupta, V.B., Martins, I.J., Martins, R.N., Fowler, C.J., Bush, A.I., Finkelstein, D.I. and Adlard, P.A. (2015) Zinc Affects the Proteolytic Stability of Apolipoprotein E in an Isoform-Dependent Way. Neurobiology of Disease, 81, 38-48.

  53. 53. Nakamura, T., Watanabe, A., Fujino, T., Hosono, T. and Michikawa, M. (2009) Apolipoprotein E4 (1-272) Fragment Is Associated with Mitochondrial Proteins and Affects Mitochondrial Function in Neuronal Cells. Molecular Neurodegeneration, 4, 35. https://doi.org/10.1186/1750-1326-4-35

  54. 54. Chin, D., Hagl, S., Hoehn, A., Huebbe, P., Pallauf, K., Grune, T., Frank, J., Eckert, G.P. and Rimbach, G. (2014) Adenosine Triphosphate Concentrations Are Higher in the Brain of APOE3-Compared to APOE4-Targeted Replacement Mice and Can Be Modulated by Curcumin. Genes & Nutrition, 9, 397. https://doi.org/10.1007/s12263-014-0397-3

  55. 55. Su, B., Wang, X., Bonda, D., Perry, G., Smith, M. and Zhu, X. (2010) Abnormal Mitochondrial Dynamics—A Novel Therapeutic Target for Alzheimer’s Disease? Molecular Neurobiology, 41, 87-96. https://doi.org/10.1007/s12035-009-8095-7

  56. 56. Yu, C.E., Seltman, H., Peskind, E.R., Galloway, N., Zhou, P.X., Rosenthal, E., Wijsman, E.M., Tsuang, D.W., Devlin, B. and Schellenberg, G.D. (2007) Comprehensive Analysis of APOE and Selected Proximate Markers for Late-Onset Alzheimer’s Disease: Patterns of Linkage Disequilibrium and Disease/Marker Association. Genomics, 89, 655-665.

  57. 57. Chaudhari, N., Talwar, P., Parimisetty, A., Lefebvre d’Hellencourt, C. and Ravanan, P. (2014) A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress. Frontiers in Cellular Neuroscience, 8, 213. https://doi.org/10.3389/fncel.2014.00213

  58. 58. Zhang, H., Wu, L.M. and Wu, J. (2011) Cross-Talk between Apolipoprotein e and Cytokines. Mediators of Inflammation, 2011, Article ID: 949072. https://doi.org/10.1155/2011/949072

  59. 59. Li, X., Montine, K.S., Keene, C.D. and Montine, T.J. (2015) Different Mechanisms of Apolipoprotein E Isoform-Dependent Modulation of Prostaglandin E2 Production and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Expression after Innate Immune Activation of Microglia. The FASEB Journal, 29, 1754-1762. https://doi.org/10.1096/fj.14-262683

  60. 60. Vitek, M.P., Brown, C.M. and Colton, C.A. (2009) APOE Genotype-Specific Differences in the Innate Immune Response. Neurobiology of Aging, 30, 1350-1360.

期刊菜单