﻿ 正交试验条件下的双锥旋分器结构参数的确定 The Optimal Structure Parameters of Hydrocyclone with Dual Cone Based on Orthogonal Design

Mechanical Engineering and Technology
Vol.05 No.04(2016), Article ID:19392,8 pages
10.12677/MET.2016.54043

The Optimal Structure Parameters of Hydrocyclone with Dual Cone Based on Orthogonal Design

Feng Li, Zihan Xu

Northeast Petroleum University, Daqing Heilongjiang

Received: Dec. 2nd, 2016; accepted: Dec. 17th, 2016; published: Dec. 27th, 2016

ABSTRACT

Emissions and processing of oil-bearing sludge generated during oil field exploration and production processes have been major problems to be solved. Based on orthogonal design and computational fluid dynamics, dual-cone hydrocyclone monomer structure suitable for separating fine particles has been simulated. According to the analysis of solid-phase volume, oil-phase volume of underflow port and pressure fall of overflow port in different experimental groups, the optimal structure was found. Through these tests, the optimal structure operating parameters were found. Finally dual-cone hydrocyclone monomer structure was designed for high-efficient treatment of oil-bearing sludge. The optimal efficiency can reach 96.22%.

Keywords:Orthogonal Design, Structure Optimization, Operating Parameters

1. 前言

2. 主要结构参数与正交设计

Figure 1. The basic structure of hydrocyclone

Table 1. Test factors table

Table 2. Analysis table for results of the orthogonal test

Table 3. Variance analysis table of the orthogonal test

3. 优选结构

4. 优选操作参数

4.1. 分流比对旋流器性能的影响

Figure 2. Solid-phase volume distribution of different experimental groups

Figure 3. Oil-phase volume of underflow port

Figure 4. Pressure fall of overflow port

Figure 5. Solid-phase volume of underflow port under different split ratio

Figure 6. Simulation results under different split ratio

4.2. 处理量对旋流器性能的影响

Figure 7. Solid-phase volume of underflow port under different velocity

Figure 8. Simulation results under different velocity

5. 结论

1) 根据正交试验，得出分离效率相对较好的试验组：入口直径为13 mm，上锥段角度20˚，下锥段角度3˚，接口直径40 mm，底流口直径10 mm，即A3B3C1D3E2。并且从直观分析中可以看出分离效率较好。方差分析各因素均无显著影响，说明试验中误差较小，结构选择较合理。

2) 通过对不同试验组模拟固相体积分数分布云图，底流口油相体积分数分布以及溢流口压力降的综合分析，得到最优结构，即A3B3C1D3E2，其分离效率达到94.20%。

3) 在最优结构基础上，对固–液分离双锥旋流器的分流比以及处理量进行模拟分析，得出最佳分流比为15%，以及最优入口速度为13.89 m/s。优化后的结构分离效率达到96.22%。

The Optimal Structure Parameters of Hydrocyclone with Dual Cone Based on Orthogonal Design[J]. 机械工程与技术, 2016, 05(04): 352-359. http://dx.doi.org/10.12677/MET.2016.54043

1. 1. Raziyeh, S. and Ataallah, S.G. (2014) CFD Simulation of an Industrial Hydrocyclone with Eulerian-Eulerian Approach: A Case Study. International Journal of Mining Science and Technology, 24, 643-648. https://doi.org/10.1016/j.ijmst.2014.07.010

2. 2. Siangsanun, V., Guigui, C. and Morchain, J. (2011) Velocity Measurement in the Hydrocyclone by Oil Droplet, Doppler Ultrasound Velocimetry, and CFD Modelling. The Canadian Journal of Chemical Engineering, 89, 725-733. https://doi.org/10.1002/cjce.20440

3. 3. 崔瑞, 王光辉, 李茂林. 基于正交设计与计算流体动力学模拟的双锥旋流器锥体设计研究[J]. 中国矿业, 2015(4): 148-151.

4. 4. 朱学佳, 袁惠新, 曹仲文, 李雪斌. 典型旋流器压力降的分析与比较[J]. 化工装备技术, 2007, 28(6): 1-5.

5. 5. 王淑军, 吕秀丽. 计算流体力学软件FLUENT在旋流器流场模拟中的应用[J]. 煤炭加工与综合利用, 2014(9): 28-30+8.

6. 6. 傅进军. 固液旋流器分离效率影响因素分析[J]. 科学技术与工程, 2009, 9(18): 5576-5581.

7. 7. 苏劲, 袁智, 侍玉苗, 陈波洋. 水力旋流器细粒分离效率优化与数值模拟[J]. 机械工程学报, 2011, 47(20): 183- 190.