Advances in Applied Mathematics
Vol.04 No.02(2015), Article ID:15213,6 pages
10.12677/AAM.2015.42018

Blowup of Solutions for a System of Doubly Nonlinear Degenerate Parabolic Equations with p-Laplacian

Longfei Qi, Jing Su, Qingying Hu

College of Science, Henan University of Technology, Zhengzhou Henan

Email: slxhqy@163.com

Received: Apr. 24th, 2015; accepted: May 7th, 2015; published: May 13th, 2015

Copyright © 2015 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

This paper is concerned with a system of doubly nonlinear degenerate parabolic equations with p-Laplacian. We prove that, under suitable conditions on the nonlinearity and certain initial datum, the lower bound for the blowup time is given if blowup does occur by using a modification of Levine’s concavity method.

Keywords:Blowup of Solution, Doubly Nonlinear Parabolic Equations, Levine’s Concavity Method

多重非线性退化的p-Laplacian抛物方程组解的爆破

齐龙飞,苏璟,呼青英

河南工业大学理学院,河南 郑州

Email: slxhqy@163.com

收稿日期:2015年4月24日;录用日期:2015年5月7日;发布日期:2015年5月13日

摘 要

本文研究了一类多重非线性退化的p-Laplacian抛物方程组解的爆破,利用修正的Levine凸性方法,在非线性项和初始条件的适当条件下,给出了解爆破时间的下界。

关键词 :爆破,多重非线性抛物方程组,Levine凸性方法

1. 引言

本文研究如下非线性抛物方程组解的爆破性

(1.1)

(1.2)

(1.3)

(1.4)

其中上的有界区域且有光滑边界为以后给定的函数,为正的初始函数。

近几十年来,非线性抛物方程解的爆破问题引起人们的极大兴趣,考虑爆破性自然要研究解是否会爆破以及解的爆破时间,在这方面已经有大量的文献,如文献[1] -[5] 。问题(1.1)~(1.4)可以描述诸多化学反应、热传导过程和种群动力学过程(见文献 [6] - [17] 及其参考文献),它有多个非线性项,处理难度较大。对型如(1.1)的单个多重非线性抛物方程

(1.5)

已有许多结果,如文献 [6] - [10] 给出了方程(1.5)的初边值问题和初值问题局部和整体解的存在性,文献 [11] - [14] 则研究了其整体吸引子的存在性和正则性,类似方程(1.1),(1.2)的方程组问题的整体吸引子的存在性和正则性也有一些研究 [15] - [17] 。但关于该类问题解的爆破性研究则相对较少,Iami和Mochizuki [18] 给出了Neumann初边值条件下方程(1.5)的爆破条件,Levine [19] - [21] 则用凸性方法证明了单个方程(1.1)及其等价的如下问题解的爆破性

Korpusov和Sveshnikov [22] [23] 及Polat [24] 则对如下方程的初边值问题

在负初始能量时得到解的爆破条件。Wang和Ge [25] 及其参考文献则利用比较原理讨论了非线性边界时方程(1.1),(1.2)中非线性项为时解的爆破问题。

本文利用修正的Levine凸性方法讨论问题(1.1)~(1.4)解的爆破条件,推广了文献 [22] - [25] 的结果。在第二节将给出一些假设和基本引理,第三节给出主要结果和证明。

2. 假设和引理

本文所用符号均同文献 [6] ,记为通常的Soblev空间,其范数分别记为,特别是当时,记

本文始终假设。关于非线性项的假设如下:

(A1),存在函数使得

且存在常数使得

,

其中,时,时。

注:满足条件(A1)的函数是存在的。事实上,一个典型的例子是取

,即

这时, ,其中。该例的详细情况可见文献 [26] 。

利用Galerkin方法,结合单调性理论和紧性方法 [2] ,类似文献 [27] 可得问题(1.1)~(1.4)解的局部存在性。

定理2.1. 假设条件(A1)成立且,则问题(1.1)~(1.4)存在弱解,即,存在使得

且对任意和任意分别的(或)成立:

以及

下面给出本文的基本引理。

引理2.2. [5] [27] 设是R上非负二次连续可导函数且满足不等式

其中为常数。若,则必存在时刻,使当时有,其中

3. 主要结果及证明

首先引入泛函

(3.1)

(3.2)

(3.3)

(3.4)

现给出主要引理。

引理3.1. 对任意,下面不等式成立

(3.5)

证明 注意到

(3.6)

注意到由Holder不等式得下列不等式

(3.7)

(3.8)

考虑到(3.7)~(3.8),则由(3.6)得

再利用不等式

于是,引理得证。

下面,给出主要定理。

定理3.2. 设定理2.1的条件成立,且

(3.9)

则问题(1.1)~(1.4)的弱解必在某有限时刻爆破,即

证明 注意到

由(3.1),得

把(1.1),(1.2)代入得

(3.10)

利用

由(3.2)及方程(1.1),(1.2)得

(3.11)

(3.11)关于t积分得

(3.12)

再利用条件(A1)得

(3.13)

(3.10)结合(3.13),并用到

, (3.14)

注意到

(3.15)

利用引理3.1,得

其中

如果,由(3.1),(3.6)和(3.9)知,于是,由引理2.2得结论。如果,取,则(3.15)变为

(3.16)

于是,由(3.16)和标准的凸性引理得结论。综合两种情况即得

文章引用

齐龙飞,苏 璟,呼青英, (2015) 多重非线性退化的p-Laplacian抛物方程组解的爆破
Blowup of Solutions for a System of Doubly Nonlinear Degenerate Parabolic Equations with p-Laplacian. 应用数学进展,02,129-135. doi: 10.12677/AAM.2015.42018

参考文献 (References)

  1. 1. Ball, J.M. (1977) On blowup and nonexistence theorems for nonlinear evolution equations. Quarterly Journal of Ma-thematics: Oxford Journals, 28, 473-486.

  2. 2. Levine, H.A. (1975) Nonexistence of global weak solutions to some properly and improperly posed problem of mathematical physics: The methods of unbounded Fourier coefficients. Mathematische Annalen, 214, 205-220.

  3. 3. Bandle, C. and Brumer, H. (1998) Blowup in diffusion equations: A sur-vey. Journal of Computational and Applied Mathematics, 97, 3-22.

  4. 4. Jiang, Z., Zheng, S. and Song, S. (2004) Blow-up analysis for a nonlinear diffusion equation with nonlinear boundary conditions. Applied Mathematics Letters, 17, 193-199.

  5. 5. Levine, H.A. (1973) Some nonexistence and instability theorems for solutions of formally parabolic equations of the form . Archive for Rational Mechanics and Analysis, 51, 371-386.

  6. 6. Lions, J.L. (1969) Quelques methodes de resolution desproblemes aux limites non lineaires. Dunod, Paris.

  7. 7. Ivanov, A.V. (1993) Quasilinear parabolic equations admitting double degeneracy. St. Petersburg Mathematical Journal, 4, 1153-1168.

  8. 8. Eden, A., Michaux, B. and Rakotoson, J.M. (1991) Doubly nonlinear parabolic type equations as dy-namical systems. Journal of Dynamics and Differential Equations, 3, 87-131.

  9. 9. Laptev, G.I. (1997) Solvability of second-order quasilinear parabolic equations with double degeneration. Siberian Mathematical Journal, 38, 1160-1177.

  10. 10. Tsutsumi, M. (1988) On solution of some doubly nonlinear parabolic equations with absorption. Journal of Mathematical Analysis and Applications, 132, 187-212.

  11. 11. Eden, A. and Rakotoson, J.M. (1994) Expo-nential attractors for a doubly nonlinear equation. Journal of Mathematical Analysis and Applications, 185, 321-339.

  12. 12. Miranville, A. (2006) Finite dimensional global attractor for a class of doubly nonlinear parabolic equation. Central European Journal of Mathematics, 4, 163-182.

  13. 13. Miranville, A. and Zelik, S. (2007) Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type. Nonlinearity, 20, 1773-1797.

  14. 14. Hachimi, A.E. and Ouardi, H.E. (2002) Existence and of regularity a global attractor for doubly nonlinear parabolic equations. Electronic Journal of Differential Equations, 2002, 1-15.

  15. 15. Ouardi, H.E. and Hachimi, A.E. (2006) Attractors for a class of doubly nonlinear parabolic systems. Electronic Journal of Qualitative Theory of Differential Equations, 2006, 1-15.

  16. 16. Ouardi, H.E. (2007) On the finite dimension of attractors of doubly nonlinear parabolic systems with l-trajectories. Archivum Mathematicum, 43, 289-303.

  17. 17. Ouardi, H.E. and Hachimi, A.E. (2001) Existence and attractors of solutions for nonlinear parabolic systems. Electronic Journal of Qualitative Theory of Differential Equations, 2001, 1-16.

  18. 18. Iami, T. and Mochizuki, K. (1991) On the blowup of solutions for quasilinear degenerate parabolic equations. Publications of the Research Institute for Mathematical Sciences, Kyoto University, 27, 695-709.

  19. 19. Levine, H.A. and Sacks, P.E. (1984) Some existence and nonexistence theorems for solutions of degenerate parabolic equations. Journal of Differential Equations, 52, 135-161.

  20. 20. Levine, H.A. and Payne, L.E. (1974) Nonexistence theorems for the heat equations with nonlinear boundary conditions and for the porous medium equation backward in time. Journal of Differential Equations, 16, 319-334.

  21. 21. Levine, H.A., Park, S.R. and Serrin, J.M. (1998) Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type. Journal of Differential Equations, 142, 212-229.

  22. 22. Al’shin, A.B., Korpusov, M.O. and Sveshnikov, A.G. (2011) Blow-up in nonlinear Sobolev type equations. De Gruyter, Berlin/New York.

  23. 23. Korpusov, M.O. and Sveshnikov, A.G. (2008) Sufficient close-to-necessary conditions for the blowup of solutions to a strongly nonlinear generalized Boussinesq equation. Computational Mathematics and Mathematical Physics, 48, 1591- 1599.

  24. 24. Polat, N. (2007) Blow up of solution for a nonlinear reaction diffusion equation with multiple nonlinearities. International Journal of Science and Technology, 2, 123-128.

  25. 25. Wang, J. and Ge, Y.Y. (2012) Blow-up analysis for a doubly nonlinear parabolic system with multi-coupled nonlinearities. Electronic Journal of Qualitative Theory of Differential Equations, 2012, 1-17.

  26. 26. Agre, K. and Rammaha, M.A. (2006) Systems of nonlinear wave equations with damping and source terms. Differential and Integral Equations, 19, 1235-1270.

  27. 27. Korpusov, M.O. (2013) Solution blow-up for a class of parabolic equations with double nonlinearity. Sbornik: Mathematics, 204, 323-346.

期刊菜单